Context: I have a DataFrame with 2 columns: word and vector. Where the column type of "vector" is VectorUDT.
An Example:
word    |  vector
assert  | [435,323,324,212...]
And I want to get this:
word   |  v1 | v2  | v3 | v4 | v5 | v6 ......
assert | 435 | 5435| 698| 356|....
Question:
How can I split a column with vectors in several columns for each dimension using PySpark ?
Thanks in advance
Spark >= 3.0.0
Since Spark 3.0.0 this can be done without using UDF.
from pyspark.ml.functions import vector_to_array
(df
    .withColumn("xs", vector_to_array("vector")))
    .select(["word"] + [col("xs")[i] for i in range(3)]))
## +-------+-----+-----+-----+
## |   word|xs[0]|xs[1]|xs[2]|
## +-------+-----+-----+-----+
## | assert|  1.0|  2.0|  3.0|
## |require|  0.0|  2.0|  0.0|
## +-------+-----+-----+-----+
Spark < 3.0.0
One possible approach is to convert to and from RDD:
from pyspark.ml.linalg import Vectors
df = sc.parallelize([
    ("assert", Vectors.dense([1, 2, 3])),
    ("require", Vectors.sparse(3, {1: 2}))
]).toDF(["word", "vector"])
def extract(row):
    return (row.word, ) + tuple(row.vector.toArray().tolist())
df.rdd.map(extract).toDF(["word"])  # Vector values will be named _2, _3, ...
## +-------+---+---+---+
## |   word| _2| _3| _4|
## +-------+---+---+---+
## | assert|1.0|2.0|3.0|
## |require|0.0|2.0|0.0|
## +-------+---+---+---+
An alternative solution would be to create an UDF:
from pyspark.sql.functions import udf, col
from pyspark.sql.types import ArrayType, DoubleType
def to_array(col):
    def to_array_(v):
        return v.toArray().tolist()
    # Important: asNondeterministic requires Spark 2.3 or later
    # It can be safely removed i.e.
    # return udf(to_array_, ArrayType(DoubleType()))(col)
    # but at the cost of decreased performance
    return udf(to_array_, ArrayType(DoubleType())).asNondeterministic()(col)
(df
    .withColumn("xs", to_array(col("vector")))
    .select(["word"] + [col("xs")[i] for i in range(3)]))
## +-------+-----+-----+-----+
## |   word|xs[0]|xs[1]|xs[2]|
## +-------+-----+-----+-----+
## | assert|  1.0|  2.0|  3.0|
## |require|  0.0|  2.0|  0.0|
## +-------+-----+-----+-----+
For Scala equivalent see Spark Scala: How to convert Dataframe[vector] to DataFrame[f1:Double, ..., fn: Double)].
To split the rawPrediction or probability columns generated after training a PySpark ML model into Pandas columns, you can split like this:
your_pandas_df['probability'].apply(lambda x: pd.Series(x.toArray()))
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With