Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to split Vector into columns - using PySpark

Context: I have a DataFrame with 2 columns: word and vector. Where the column type of "vector" is VectorUDT.

An Example:

word    |  vector
assert  | [435,323,324,212...]

And I want to get this:

word   |  v1 | v2  | v3 | v4 | v5 | v6 ......
assert | 435 | 5435| 698| 356|....

Question:

How can I split a column with vectors in several columns for each dimension using PySpark ?

Thanks in advance

like image 818
sedioben Avatar asked Jul 14 '16 21:07

sedioben


2 Answers

Spark >= 3.0.0

Since Spark 3.0.0 this can be done without using UDF.

from pyspark.ml.functions import vector_to_array

(df
    .withColumn("xs", vector_to_array("vector")))
    .select(["word"] + [col("xs")[i] for i in range(3)]))

## +-------+-----+-----+-----+
## |   word|xs[0]|xs[1]|xs[2]|
## +-------+-----+-----+-----+
## | assert|  1.0|  2.0|  3.0|
## |require|  0.0|  2.0|  0.0|
## +-------+-----+-----+-----+

Spark < 3.0.0

One possible approach is to convert to and from RDD:

from pyspark.ml.linalg import Vectors

df = sc.parallelize([
    ("assert", Vectors.dense([1, 2, 3])),
    ("require", Vectors.sparse(3, {1: 2}))
]).toDF(["word", "vector"])

def extract(row):
    return (row.word, ) + tuple(row.vector.toArray().tolist())

df.rdd.map(extract).toDF(["word"])  # Vector values will be named _2, _3, ...

## +-------+---+---+---+
## |   word| _2| _3| _4|
## +-------+---+---+---+
## | assert|1.0|2.0|3.0|
## |require|0.0|2.0|0.0|
## +-------+---+---+---+

An alternative solution would be to create an UDF:

from pyspark.sql.functions import udf, col
from pyspark.sql.types import ArrayType, DoubleType

def to_array(col):
    def to_array_(v):
        return v.toArray().tolist()
    # Important: asNondeterministic requires Spark 2.3 or later
    # It can be safely removed i.e.
    # return udf(to_array_, ArrayType(DoubleType()))(col)
    # but at the cost of decreased performance
    return udf(to_array_, ArrayType(DoubleType())).asNondeterministic()(col)

(df
    .withColumn("xs", to_array(col("vector")))
    .select(["word"] + [col("xs")[i] for i in range(3)]))

## +-------+-----+-----+-----+
## |   word|xs[0]|xs[1]|xs[2]|
## +-------+-----+-----+-----+
## | assert|  1.0|  2.0|  3.0|
## |require|  0.0|  2.0|  0.0|
## +-------+-----+-----+-----+

For Scala equivalent see Spark Scala: How to convert Dataframe[vector] to DataFrame[f1:Double, ..., fn: Double)].

like image 180
zero323 Avatar answered Oct 25 '22 23:10

zero323


To split the rawPrediction or probability columns generated after training a PySpark ML model into Pandas columns, you can split like this:

your_pandas_df['probability'].apply(lambda x: pd.Series(x.toArray()))
like image 4
Nic Scozzaro Avatar answered Oct 25 '22 23:10

Nic Scozzaro