Below is an example DataFrame.
0 1 2 3 4
0 0.0 13.00 4.50 30.0 0.0,13.0
1 0.0 13.00 4.75 30.0 0.0,13.0
2 0.0 13.00 5.00 30.0 0.0,13.0
3 0.0 13.00 5.25 30.0 0.0,13.0
4 0.0 13.00 5.50 30.0 0.0,13.0
5 0.0 13.00 5.75 0.0 0.0,13.0
6 0.0 13.00 6.00 30.0 0.0,13.0
7 1.0 13.25 0.00 30.0 0.0,13.25
8 1.0 13.25 0.25 0.0 0.0,13.25
9 1.0 13.25 0.50 30.0 0.0,13.25
10 1.0 13.25 0.75 30.0 0.0,13.25
11 2.0 13.25 1.00 30.0 0.0,13.25
12 2.0 13.25 1.25 30.0 0.0,13.25
13 2.0 13.25 1.50 30.0 0.0,13.25
14 2.0 13.25 1.75 30.0 0.0,13.25
15 2.0 13.25 2.00 30.0 0.0,13.25
16 2.0 13.25 2.25 30.0 0.0,13.25
I want to split this into new dataframes when the row in column 0 changes.
0 1 2 3 4
0 0.0 13.00 4.50 30.0 0.0,13.0
1 0.0 13.00 4.75 30.0 0.0,13.0
2 0.0 13.00 5.00 30.0 0.0,13.0
3 0.0 13.00 5.25 30.0 0.0,13.0
4 0.0 13.00 5.50 30.0 0.0,13.0
5 0.0 13.00 5.75 0.0 0.0,13.0
6 0.0 13.00 6.00 30.0 0.0,13.0
7 1.0 13.25 0.00 30.0 0.0,13.25
8 1.0 13.25 0.25 0.0 0.0,13.25
9 1.0 13.25 0.50 30.0 0.0,13.25
10 1.0 13.25 0.75 30.0 0.0,13.25
11 2.0 13.25 1.00 30.0 0.0,13.25
12 2.0 13.25 1.25 30.0 0.0,13.25
13 2.0 13.25 1.50 30.0 0.0,13.25
14 2.0 13.25 1.75 30.0 0.0,13.25
15 2.0 13.25 2.00 30.0 0.0,13.25
16 2.0 13.25 2.25 30.0 0.0,13.25
I've tried adapting the following solutions without any luck so far. Split array at value in numpy Split a large pandas dataframe
Looks like you want to groupby
the first colum. You could create a dictionary from the groupby object, and have the groupby keys be the dictionary keys:
out = dict(tuple(df.groupby(0)))
Or we could also build a list from the groupby object. This becomes more useful when we only want positional indexing rather than based on the grouping key:
out = [sub_df for _, sub_df in df.groupby(0)]
We could then index the dict based on the grouping key, or the list based on the group's position:
print(out[0])
0 1 2 3 4
0 0.0 13.0 4.50 30.0 0.0,13.0
1 0.0 13.0 4.75 30.0 0.0,13.0
2 0.0 13.0 5.00 30.0 0.0,13.0
3 0.0 13.0 5.25 30.0 0.0,13.0
4 0.0 13.0 5.50 30.0 0.0,13.0
5 0.0 13.0 5.75 0.0 0.0,13.0
6 0.0 13.0 6.00 30.0 0.0,13.0
Based on
I want to split this into new dataframes when the row in column 0 changes.
If you only want to group when value in column 0 changes , You can try:
d=dict([*df.groupby(df['0'].ne(df['0'].shift()).cumsum())])
print(d[1])
print(d[2])
0 1 2 3 4
0 0.0 13.0 4.50 30.0 0.0,13.0
1 0.0 13.0 4.75 30.0 0.0,13.0
2 0.0 13.0 5.00 30.0 0.0,13.0
3 0.0 13.0 5.25 30.0 0.0,13.0
4 0.0 13.0 5.50 30.0 0.0,13.0
5 0.0 13.0 5.75 0.0 0.0,13.0
6 0.0 13.0 6.00 30.0 0.0,13.0
0 1 2 3 4
7 1.0 13.25 0.00 30.0 0.0,13.25
8 1.0 13.25 0.25 0.0 0.0,13.25
9 1.0 13.25 0.50 30.0 0.0,13.25
10 1.0 13.25 0.75 30.0 0.0,13.25
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With