Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to speed up series generation?

The problem requires to generate the n-th element of a sequence that is similar to Fibonacci sequence. However, it's a bit tricky because n is very large (1 <= n <= 10^9). The answer then modulo 1000000007. The sequence is defined as follows:
enter image description here

Using generating function, I obtain the following formula: enter image description here

If I use the sequence approach then the answer can be modulo, but it run extremely slow. In fact, I got time limit exceed many times. I also tried to use a table to pre-generate some initial values (cache), still it was not fast enough. In addition, the maximum number of elements that I can store in an array/vector (C++) is too small compared with 10^9, so I guess this approach doesn't work either.
If I use the direct formula then it run extremely fast but only for n that is small. For n large, double will got truncated, plus I won't be able to mod my answer with that number because modulo only works with integer.
I ran out of idea, and I think there must be a very nice trick to work around this problem, unfortunately I just can't think of one. Any idea would be greatly appreciated.

Here's my initial approach:

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <bitset>
#include <fstream>
#include <iomanip>
#include <set>
#include <stack>
#include <sstream>
#include <cstdio>
#include <map>
#include <cmath>

using namespace std;

typedef unsigned long long ull;

ull count_fair_coins_by_generating_function(ull n) {
    n--;
    return 
        (sqrt(3.0) + 1)/((sqrt(3.0) - 1) * 2 * sqrt(3.0)) * pow(2 / (sqrt(3.0) - 1), n * 1.0) 
        +
        (1 - sqrt(3.0))/((sqrt(3.0) + 1) * 2 * sqrt(3.0)) * pow(-2 / (sqrt(3.0) + 1), n * 1.0);
}

ull count_fair_coins(ull n) {
    if (n == 1) {
        return 1;
    }
    else if (n == 2) {
        return 3;
    }
    else {
        ull a1 = 1;
        ull a2 = 3;
        ull result;
        for (ull i = 3; i <= n; ++i) {
            result = (2*a2 + 2*a1) % 1000000007;
            a1 = a2;
            a2 = result;
        }

        return result;
    }
}

void inout_my_fair_coins() {
    int test_cases;
    cin >> test_cases;

    map<ull, ull> cache;
    ull n;
    while (test_cases--) {
        cin >> n;
        cout << count_fair_coins_by_generating_function(n) << endl;
        cout << count_fair_coins(n) << endl;
    }
}

int main() {
    inout_my_fair_coins();
    return 0;
} 

Update Since the contest was over, I posted my solution based on tskuzzy idea for those who are interested. Once again, thanks tskuzzy. You can view the original problem statement here: http://www.codechef.com/problems/CSUMD
First, you need to figure out the probability of those 1 coin and 2 coin, then get some initial values to obtain the sequence. The complete solution is here:

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <bitset>
#include <fstream>
#include <iomanip>
#include <set>
#include <stack>
#include <sstream>
#include <cstdio>
#include <map>
#include <cmath>

using namespace std;

typedef unsigned long long ull;

const ull special_prime = 1000000007;

/*
    Using generating function for the recurrence:
           | 1                     if n = 1
    a_n =  | 3                     if n = 2
           | 2a_{n-1} + 2a_{n-2}     if n > 2

    This method is probably the fastest one but it won't work 
    because when n is large, double just can't afford it. Plus,
    using this formula, we can't apply mod for floating point number.
    1 <= n <= 21
*/
ull count_fair_coins_by_generating_function(ull n) {
    n--;
    return 
        (sqrt(3.0) + 1)/((sqrt(3.0) - 1) * 2 * sqrt(3.0)) * pow(2 / (sqrt(3.0) - 1), n * 1.0) 
        +
        (1 - sqrt(3.0))/((sqrt(3.0) + 1) * 2 * sqrt(3.0)) * pow(-2 / (sqrt(3.0) + 1), n * 1.0);
}

/*
    Naive approach, it works but very slow. 
    Useful for testing.
*/
ull count_fair_coins(ull n) {
    if (n == 1) {
        return 1;
    }
    else if (n == 2) {
        return 3;
    }
    else {
        ull a1 = 1;
        ull a2 = 3;
        ull result;
        for (ull i = 3; i <= n; ++i) {
            result = (2*a2 + 2*a1) % 1000000007;
            a1 = a2;
            a2 = result;
        }

        return result;
    }
}

struct matrix_2_by_2 {
    ull m[2][2];
    ull a[2][2];
    ull b[2][2];

    explicit matrix_2_by_2(ull a00, ull a01, ull a10, ull a11) {
        m[0][0] = a00;
        m[0][1] = a01;
        m[1][0] = a10;
        m[1][1] = a11;
    }

    matrix_2_by_2 operator *(const matrix_2_by_2& rhs) const {
        matrix_2_by_2 result(0, 0, 0, 0);
        result.m[0][0] = (m[0][0] * rhs.m[0][0]) + (m[0][1] * rhs.m[1][0]);
        result.m[0][1] = (m[0][0] * rhs.m[0][1]) + (m[0][1] * rhs.m[1][1]);
        result.m[1][0] = (m[1][0] * rhs.m[0][0]) + (m[1][1] * rhs.m[1][0]);
        result.m[1][1] = (m[1][0] * rhs.m[0][1]) + (m[1][1] * rhs.m[1][1]);
        return result;
    }

    void square() {
        a[0][0] = b[0][0] = m[0][0];
        a[0][1] = b[0][1] = m[0][1];
        a[1][0] = b[1][0] = m[1][0];
        a[1][1] = b[1][1] = m[1][1];

        m[0][0] = (a[0][0] * b[0][0]) + (a[0][1] * b[1][0]);
        m[0][1] = (a[0][0] * b[0][1]) + (a[0][1] * b[1][1]);
        m[1][0] = (a[1][0] * b[0][0]) + (a[1][1] * b[1][0]);
        m[1][1] = (a[1][0] * b[0][1]) + (a[1][1] * b[1][1]);
    }

    void mod(ull n) {
        m[0][0] %= n;
        m[0][1] %= n;
        m[1][0] %= n;
        m[1][1] %= n;
    }

    /*
        exponentiation by squaring algorithm
                | 1                    if n = 0 
                | (1/x)^n              if n < 0 
        x^n =   | x.x^({(n-1)/2})^2    if n is odd
                | (x^{n/2})^2          if n is even

        The following algorithm calculate a^p % m
        int modulo(int a, int p, int m){
            long long x = 1;
            long long y = a; 

            while (p > 0) {
                if (p % 2 == 1){
                    x = (x * y) % m;
                }

                // squaring the base
                y = (y * y) % m; 
                p /= 2;
            }

            return x % c;
        }

        To apply for matrix, we need an identity which is
        equivalent to 1, then perform multiplication for matrix 
        in similar manner. Thus the algorithm is defined 
        as follows:
    */
    void operator ^=(ull p) {
        matrix_2_by_2 identity(1, 0, 0, 1);

        while (p > 0) {
            if (p % 2) {
                identity = operator*(identity);
                identity.mod(special_prime);
            }

            this->square();
            this->mod(special_prime);
            p /= 2;
        }

        m[0][0] = identity.m[0][0];
        m[0][1] = identity.m[0][1];
        m[1][0] = identity.m[1][0];
        m[1][1] = identity.m[1][1];
    }

    friend
    ostream& operator <<(ostream& out, const matrix_2_by_2& rhs) {
        out << rhs.m[0][0] << ' ' << rhs.m[0][1] << '\n';
        out << rhs.m[1][0] << ' ' << rhs.m[1][1] << '\n';
        return out;
    }
};

/*
    |a_{n+2}| = |2 2|^n  x |3| 
    |a_{n+1}|   |1 0|      |1|
*/
ull count_fair_coins_by_matrix(ull n) {
    if (n == 1) {
        return 1;
    } else {
        matrix_2_by_2 m(2, 2, 1, 0);
        m ^= (n - 1);
        return (m.m[1][0] * 3 + m.m[1][1]) % 1000000007;
    }
}

void inout_my_fair_coins() {
    int test_cases;
    scanf("%d", &test_cases);

    ull n;
    while (test_cases--) {
        scanf("%llu", &n);
        printf("%d\n", count_fair_coins_by_matrix(n));
    }
}

int main() {
    inout_my_fair_coins();
    return 0;
}  
like image 289
Chan Avatar asked Jul 08 '12 06:07

Chan


People also ask

Why is my series S downloading so slow?

Slow downloads on Xbox Series X/S are usually caused by an unstable or slow internet connection, or other software (like a multiplayer game) taking up bandwidth. Using a wired internet connection or using sleep mode to download things when the console isn't in use can help.


1 Answers

You can write the terms of the sequence in terms of matrix exponentials:

enter image description here

which can be quickly evaluated using exponentiation by squaring. This leads to an O(log n) solution which should solve the problem well within the time constraints.

Just for future reference, if you are required to do multiplication with large numbers (not applicable in this situation since the answer is taken modulo 1000000007), you should look into the Karatsuba algorithm. This gives you sub-quadratic time multiplication.

like image 198
tskuzzy Avatar answered Nov 07 '22 02:11

tskuzzy