The problem requires to generate the n-th
element of a sequence that is similar to Fibonacci sequence. However, it's a bit tricky because n
is very large (1 <= n <= 10^9). The answer then modulo 1000000007. The sequence is defined as follows:
Using generating function, I obtain the following formula:
If I use the sequence approach then the answer can be modulo, but it run extremely slow. In fact, I got time limit exceed
many times. I also tried to use a table to pre-generate some initial values (cache), still it was not fast enough. In addition, the maximum number of elements that I can store in an array/vector
(C++) is too small compared with 10^9, so I guess this approach doesn't work either.
If I use the direct formula then it run extremely fast but only for n
that is small. For n
large, double will got truncated, plus I won't be able to mod my answer with that number because modulo only works with integer.
I ran out of idea, and I think there must be a very nice trick to work around this problem, unfortunately I just can't think of one. Any idea would be greatly appreciated.
Here's my initial approach:
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <bitset>
#include <fstream>
#include <iomanip>
#include <set>
#include <stack>
#include <sstream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
typedef unsigned long long ull;
ull count_fair_coins_by_generating_function(ull n) {
n--;
return
(sqrt(3.0) + 1)/((sqrt(3.0) - 1) * 2 * sqrt(3.0)) * pow(2 / (sqrt(3.0) - 1), n * 1.0)
+
(1 - sqrt(3.0))/((sqrt(3.0) + 1) * 2 * sqrt(3.0)) * pow(-2 / (sqrt(3.0) + 1), n * 1.0);
}
ull count_fair_coins(ull n) {
if (n == 1) {
return 1;
}
else if (n == 2) {
return 3;
}
else {
ull a1 = 1;
ull a2 = 3;
ull result;
for (ull i = 3; i <= n; ++i) {
result = (2*a2 + 2*a1) % 1000000007;
a1 = a2;
a2 = result;
}
return result;
}
}
void inout_my_fair_coins() {
int test_cases;
cin >> test_cases;
map<ull, ull> cache;
ull n;
while (test_cases--) {
cin >> n;
cout << count_fair_coins_by_generating_function(n) << endl;
cout << count_fair_coins(n) << endl;
}
}
int main() {
inout_my_fair_coins();
return 0;
}
Update
Since the contest was over, I posted my solution based on tskuzzy
idea for those who are interested. Once again, thanks tskuzzy
.
You can view the original problem statement here:
http://www.codechef.com/problems/CSUMD
First, you need to figure out the probability of those 1 coin
and 2 coin
, then get some initial values to obtain the sequence.
The complete solution is here:
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <cmath>
#include <cassert>
#include <bitset>
#include <fstream>
#include <iomanip>
#include <set>
#include <stack>
#include <sstream>
#include <cstdio>
#include <map>
#include <cmath>
using namespace std;
typedef unsigned long long ull;
const ull special_prime = 1000000007;
/*
Using generating function for the recurrence:
| 1 if n = 1
a_n = | 3 if n = 2
| 2a_{n-1} + 2a_{n-2} if n > 2
This method is probably the fastest one but it won't work
because when n is large, double just can't afford it. Plus,
using this formula, we can't apply mod for floating point number.
1 <= n <= 21
*/
ull count_fair_coins_by_generating_function(ull n) {
n--;
return
(sqrt(3.0) + 1)/((sqrt(3.0) - 1) * 2 * sqrt(3.0)) * pow(2 / (sqrt(3.0) - 1), n * 1.0)
+
(1 - sqrt(3.0))/((sqrt(3.0) + 1) * 2 * sqrt(3.0)) * pow(-2 / (sqrt(3.0) + 1), n * 1.0);
}
/*
Naive approach, it works but very slow.
Useful for testing.
*/
ull count_fair_coins(ull n) {
if (n == 1) {
return 1;
}
else if (n == 2) {
return 3;
}
else {
ull a1 = 1;
ull a2 = 3;
ull result;
for (ull i = 3; i <= n; ++i) {
result = (2*a2 + 2*a1) % 1000000007;
a1 = a2;
a2 = result;
}
return result;
}
}
struct matrix_2_by_2 {
ull m[2][2];
ull a[2][2];
ull b[2][2];
explicit matrix_2_by_2(ull a00, ull a01, ull a10, ull a11) {
m[0][0] = a00;
m[0][1] = a01;
m[1][0] = a10;
m[1][1] = a11;
}
matrix_2_by_2 operator *(const matrix_2_by_2& rhs) const {
matrix_2_by_2 result(0, 0, 0, 0);
result.m[0][0] = (m[0][0] * rhs.m[0][0]) + (m[0][1] * rhs.m[1][0]);
result.m[0][1] = (m[0][0] * rhs.m[0][1]) + (m[0][1] * rhs.m[1][1]);
result.m[1][0] = (m[1][0] * rhs.m[0][0]) + (m[1][1] * rhs.m[1][0]);
result.m[1][1] = (m[1][0] * rhs.m[0][1]) + (m[1][1] * rhs.m[1][1]);
return result;
}
void square() {
a[0][0] = b[0][0] = m[0][0];
a[0][1] = b[0][1] = m[0][1];
a[1][0] = b[1][0] = m[1][0];
a[1][1] = b[1][1] = m[1][1];
m[0][0] = (a[0][0] * b[0][0]) + (a[0][1] * b[1][0]);
m[0][1] = (a[0][0] * b[0][1]) + (a[0][1] * b[1][1]);
m[1][0] = (a[1][0] * b[0][0]) + (a[1][1] * b[1][0]);
m[1][1] = (a[1][0] * b[0][1]) + (a[1][1] * b[1][1]);
}
void mod(ull n) {
m[0][0] %= n;
m[0][1] %= n;
m[1][0] %= n;
m[1][1] %= n;
}
/*
exponentiation by squaring algorithm
| 1 if n = 0
| (1/x)^n if n < 0
x^n = | x.x^({(n-1)/2})^2 if n is odd
| (x^{n/2})^2 if n is even
The following algorithm calculate a^p % m
int modulo(int a, int p, int m){
long long x = 1;
long long y = a;
while (p > 0) {
if (p % 2 == 1){
x = (x * y) % m;
}
// squaring the base
y = (y * y) % m;
p /= 2;
}
return x % c;
}
To apply for matrix, we need an identity which is
equivalent to 1, then perform multiplication for matrix
in similar manner. Thus the algorithm is defined
as follows:
*/
void operator ^=(ull p) {
matrix_2_by_2 identity(1, 0, 0, 1);
while (p > 0) {
if (p % 2) {
identity = operator*(identity);
identity.mod(special_prime);
}
this->square();
this->mod(special_prime);
p /= 2;
}
m[0][0] = identity.m[0][0];
m[0][1] = identity.m[0][1];
m[1][0] = identity.m[1][0];
m[1][1] = identity.m[1][1];
}
friend
ostream& operator <<(ostream& out, const matrix_2_by_2& rhs) {
out << rhs.m[0][0] << ' ' << rhs.m[0][1] << '\n';
out << rhs.m[1][0] << ' ' << rhs.m[1][1] << '\n';
return out;
}
};
/*
|a_{n+2}| = |2 2|^n x |3|
|a_{n+1}| |1 0| |1|
*/
ull count_fair_coins_by_matrix(ull n) {
if (n == 1) {
return 1;
} else {
matrix_2_by_2 m(2, 2, 1, 0);
m ^= (n - 1);
return (m.m[1][0] * 3 + m.m[1][1]) % 1000000007;
}
}
void inout_my_fair_coins() {
int test_cases;
scanf("%d", &test_cases);
ull n;
while (test_cases--) {
scanf("%llu", &n);
printf("%d\n", count_fair_coins_by_matrix(n));
}
}
int main() {
inout_my_fair_coins();
return 0;
}
Slow downloads on Xbox Series X/S are usually caused by an unstable or slow internet connection, or other software (like a multiplayer game) taking up bandwidth. Using a wired internet connection or using sleep mode to download things when the console isn't in use can help.
You can write the terms of the sequence in terms of matrix exponentials:
which can be quickly evaluated using exponentiation by squaring. This leads to an O(log n)
solution which should solve the problem well within the time constraints.
Just for future reference, if you are required to do multiplication with large numbers (not applicable in this situation since the answer is taken modulo 1000000007), you should look into the Karatsuba algorithm. This gives you sub-quadratic time multiplication.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With