Pandas DataFrame to_csv() function converts DataFrame into CSV data. We can pass a file object to write the CSV data into a file. Otherwise, the CSV data is returned in the string format.
Function usedstrftime() can change the date format in python. Where, format is a string representing the type of required date format.
Since version v0.13.0 (January 3, 2014) of Pandas you can use the date_format
parameter of the to_csv method:
df.to_csv(filename, date_format='%Y%m%d')
You could use strftime
to save these as separate columns:
df['date'] = df['datetime'].apply(lambda x: x.strftime('%d%m%Y'))
df['time'] = df['datetime'].apply(lambda x: x.strftime('%H%M%S'))
and then be specific about which columns to export to csv:
df[['date', 'time', ... ]].to_csv('df.csv')
To export as a timestamp, do this:
df.to_csv(filename, date_format='%s')
The %s
format is not documented in python/pandas but works in this case.
I found the %s
from the dates formats of ruby. Strftime doc for C here
Note that the timestamp miliseconds format %Q
does not work with pandas (you'll have a litteral %Q
in the field instead of the date). I caried my sets with python 3.6 and pandas 0.24.1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With