I am trying to visualize some data using the Seaborn package in Python. In particular, I would like to use the catplot(kind='bar')
function (previously named as factorplot()
). My DataFrame looks like this (columns 'x'
, 'col'
, 'row'
and 'hue'
are categorical):
x y dy col row hue
0 4 9 0.766591 1 0 2
1 5 9 0.688683 0 1 0
2 0 7 0.707982 0 0 1
3 3 6 0.767210 2 1 0
4 3 8 0.287153 0 1 0
I would like to use the uncertainty column 'dy'
to represent the error bars of 'y'
. The default bootstrapping or standard deviation error bars performed by Seaborn catplots do not provide me with a satisfactory solution.
Here I provide the minimal-complete-verifiable example:
import pandas as pd
import numpy.random as npr
import seaborn as sns
npr.seed(seed=0)
my_sz = 1000
df_x = pd.DataFrame(npr.randint(0,7,size=(my_sz, 1)), columns=['x'])
df_y = pd.DataFrame(npr.randint(5,10,size=(my_sz, 1)), columns=['y'])
df_dy = pd.DataFrame(npr.random(size=(my_sz, 1)), columns=['dy'])
df_col = pd.DataFrame(npr.randint(0,3,size=(my_sz, 1)), columns=['col'])
df_row = pd.DataFrame(npr.randint(0,2,size=(my_sz, 1)), columns=['row'])
df_hue = pd.DataFrame(npr.randint(0,3,size=(my_sz, 1)), columns=['hue'])
df = pd.concat([df_x, df_y, df_dy, df_col, df_row, df_hue], axis=1)
df[['x', 'col', 'row', 'hue']] =df[['x', 'col', 'row', 'hue']].astype('category')
cat_plt = sns.catplot(x='x',
y='y',
hue='hue',
data=df,
row='row',
col='col',
kind='bar',
);
Seaborn categorical bar-plot with default error bars
I tried the following solution, but I think it does not work with multi-bar plots.
Thanks in advance for your time and your help.
You can do it like this:
import pandas as pd
import numpy.random as npr
import seaborn as sns
import matplotlib.pyplot as plt
def errplot(x, y, yerr, hue, **kwargs):
data = kwargs.pop('data')
p = data.pivot_table(index=x, columns=hue, values=y, aggfunc='mean')
err = data.pivot_table(index=x, columns=hue, values=yerr, aggfunc='mean')
p.plot(kind='bar', yerr=err, ax=plt.gca(), **kwargs)
sns.set_theme()
npr.seed(seed=0)
my_sz = 1000
df_x = pd.DataFrame(npr.randint(0, 7, size=(my_sz, 1)), columns=['x'])
df_y = pd.DataFrame(npr.randint(5, 10, size=(my_sz, 1)), columns=['y'])
df_dy = pd.DataFrame(npr.random(size=(my_sz, 1)), columns=['dy'])
df_col = pd.DataFrame(npr.randint(0, 3, size=(my_sz, 1)), columns=['col'])
df_row = pd.DataFrame(npr.randint(0, 2, size=(my_sz, 1)), columns=['row'])
df_hue = pd.DataFrame(npr.randint(0, 3, size=(my_sz, 1)), columns=['hue'])
df = pd.concat([df_x, df_y, df_dy, df_col, df_row, df_hue], axis=1)
df[['x', 'col', 'row', 'hue']] = df[['x', 'col', 'row', 'hue']].astype('category')
g = sns.FacetGrid(df, row='row', col='col')
g.map_dataframe(errplot, "x", "y", "dy", "hue", color=['blue', 'orange', 'green'], width=0.8)
plt.subplots_adjust(right=0.90)
plt.legend(loc='center left', bbox_to_anchor=(1,1))
plt.show()
Adapted from this answer.
Output:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With