Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to set the line style for each kdeplot in a jointgrid

I am using seaborn to create a kdeplot with marginal distribution as described in this answer. I adapted the code a little to give me this:

import matplotlib.pyplot as plt
import seaborn as sns

iris = sns.load_dataset("iris")
setosa = iris.loc[iris.species == "setosa"]
virginica = iris.loc[iris.species == "virginica"]

g = sns.JointGrid(x="sepal_width", y="petal_length", data=iris)
sns.kdeplot(setosa.sepal_width, setosa.sepal_length, cmap="Reds",
        shade=False, shade_lowest=False, ax=g.ax_joint)
sns.kdeplot(virginica.sepal_width, virginica.sepal_length, cmap="Blues",
        shade=False, shade_lowest=False, ax=g.ax_joint)
sns.distplot(setosa.sepal_width, kde=True, hist=False, color="r", ax=g.ax_marg_x)
sns.distplot(virginica.sepal_width, kde=True, hist=False, color="b", ax=g.ax_marg_x)
sns.distplot(setosa.sepal_length, kde=True, hist=False, color="r", ax=g.ax_marg_y, vertical=True)
sns.distplot(virginica.sepal_length, kde=True, hist=False, color="b", ax=g.ax_marg_y, vertical=True)
plt.show()

enter image description here

This is impossible to print in black and white. How can I get seaborn to print the kdeplot and distplot lines in a specifically styled (dotted / dashed / ...) way to make them distinguishable when printed in black and white?

The related questions deal with other types of plots which appear to support this, but this does not seem to be supported by kdeplot and distplot.

like image 724
malexmave Avatar asked Apr 05 '18 11:04

malexmave


2 Answers

Marginals

To show the lines of a kde plot with a different linestyle you use the linestyle argument, which is passed on to matplotlib's plot function.

sns.kdeplot(setosa.sepal_width, color="r", ax=g.ax_marg_x, linestyle="--")

To provide this argument to the kde plot which is produced via distplot you may use the kde_kws argument.

sns.distplot(..., kde_kws={"linestyle":"--"})

However, there does not seem to be any reason to use a distplot here.

Joint KDE

For the 2D case, the linestyle argument has no effect. A 2D kdeplot is a contour plot. Hence you need to use the contour's linestyles (not the s) argument.

sns.kdeplot(, linestyles="--")

Complete code

import matplotlib.pyplot as plt
import seaborn as sns

iris = sns.load_dataset("iris")
setosa = iris.loc[iris.species == "setosa"]
virginica = iris.loc[iris.species == "virginica"]

g = sns.JointGrid(x="sepal_width", y="petal_length", data=iris)

sns.kdeplot(setosa.sepal_width, setosa.sepal_length, cmap="Reds",
        shade=False, shade_lowest=False, ax=g.ax_joint, linestyles="--")
sns.kdeplot(virginica.sepal_width, virginica.sepal_length, cmap="Blues",
        shade=False, shade_lowest=False, ax=g.ax_joint, linestyles=":")

sns.kdeplot(setosa.sepal_width, color="r", legend=False,  
             ax=g.ax_marg_x, linestyle="--")
sns.kdeplot(virginica.sepal_width, color="b", legend=False, 
             ax=g.ax_marg_x, linestyle=":")
sns.kdeplot(setosa.sepal_length, color="r", legend=False, 
             ax=g.ax_marg_y, vertical=True, linestyle="--")
sns.kdeplot(virginica.sepal_length, color="b", legend=False, 
             ax=g.ax_marg_y, vertical=True, linestyle=":")
plt.show()

enter image description here

like image 124
ImportanceOfBeingErnest Avatar answered Oct 19 '22 11:10

ImportanceOfBeingErnest


Any keywords that sns.kdeplot does not recognise are passed to plt.contour() or plt.contourf(). In your case it is contourf, so you can pass the keyword linestyles (note the plural). sns.distplot has a keyword that is called kde_kws, which accepts a dictionary of keywords that are passed to plt.plot. In this case you can use ls or linestyle (note the singular). Below is a complete example:

import matplotlib.pyplot as plt
import seaborn as sns

iris = sns.load_dataset("iris")
setosa = iris.loc[iris.species == "setosa"]
virginica = iris.loc[iris.species == "virginica"]

g = sns.JointGrid(x="sepal_width", y="petal_length", data=iris)
sns.kdeplot(
    setosa.sepal_width, setosa.sepal_length, cmap="Greys",
    shade=False, shade_lowest=False, ax=g.ax_joint,
    linestyles='--'
)
sns.kdeplot(
    virginica.sepal_width, virginica.sepal_length, cmap="Greys",
    shade=False, shade_lowest=False, ax=g.ax_joint,
    linestyles=':'
)
sns.distplot(
    setosa.sepal_width, kde=True, hist=False, color="k",
    kde_kws=dict(ls ='--'), ax=g.ax_marg_x
)
sns.distplot(
    virginica.sepal_width, kde=True, hist=False, color="k",
    kde_kws=dict(ls=':'), ax=g.ax_marg_x
)
sns.distplot(
    setosa.sepal_length, kde=True, hist=False, color="k",
    kde_kws=dict(ls ='--'), ax=g.ax_marg_y, vertical=True
)
sns.distplot(
    virginica.sepal_length, kde=True, hist=False, color="k",
    kde_kws=dict(ls=':'), ax=g.ax_marg_y, vertical=True
)
plt.show()

And the result looks like this:

result of the above code

like image 20
Thomas Kühn Avatar answered Oct 19 '22 12:10

Thomas Kühn