I built a random forest model using the following code:
import org.apache.spark.ml.classification.RandomForestClassificationModel
import org.apache.spark.ml.classification.RandomForestClassifier
val rf = new RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("features")
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
val training = labelIndexer.transform(df)
val model = rf.fit(training)
now I want to save the model in order to predict later using the following code:
val predictions: DataFrame = model.transform(testData)
I've looked into Spark documentation here and didn't find any option to do that. Any idea? It took me a few hours to build the model , if Spark is crushing I won't be able to get it back.
It's possible to save and reload tree based models in HDFS using Spark 1.6 using saveAsObjectFile() for both Pipeline based and basic model. Below is example for pipeline based model.
// model
val model = pipeline.fit(trainingData)
// Create rdd using Seq
sc.parallelize(Seq(model), 1).saveAsObjectFile("hdfs://filepath")
// Reload model by using it's class
// You can get class of object using object.getClass()
val sameModel = sc.objectFile[PipelineModel]("filepath").first()
For RandomForestClassifier save & load model: tested spark 1.6.2 + scala in ml(in spark 2.0 you can have direct save option for model)
import org.apache.spark.ml.classification.RandomForestClassificationModel
import org.apache.spark.ml.classification.RandomForestClassifier //imports
val classifier = new RandomForestClassifier().setImpurity("gini").setMaxDepth(3).setNumTrees(20).setFeatureSubsetStrategy("auto").setSeed(5043)
val model = classifier.fit(trainingData)
sc.parallelize(Seq(model), 1).saveAsObjectFile(modelSavePath)
//save model
val linRegModel = sc.objectFile[RandomForestClassificationModel](modelSavePath).first() //load model
`val predictions1 = linRegModel.transform(testData)` //predictions1 is dataframe
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With