I generate a mixed type (floats and strings) Pandas DataFrame df3 with the following Python code:
df1 = pd.DataFrame(np.random.randn(dates.shape[0],2),index=dates,columns=list('AB'))
df1['C'] = 'A'
df1['D'] = 'Pickles'
df2 = pd.DataFrame(np.random.randn(dates.shape[0], 2),index=dates,columns=list('AB'))
df2['C'] = 'B'
df2['D'] = 'Ham'
df3 = pd.concat([df1, df2], axis=0)
When I resample df3 to a higher frequency I don't get the frame resampled to a higher rate but the how is ignored and I just get missing values:
df4 = df3.groupby(['C']).resample('M', how={'A': 'mean', 'B': 'mean', 'D': 'ffill'})
df4.head()
Result:
B A D
C
A 2014-03-31 -0.4640906 -0.2435414 Pickles
2014-04-30 NaN NaN NaN
2014-05-31 NaN NaN NaN
2014-06-30 -0.5626360 0.6679614 Pickles
2014-07-31 NaN NaN NaN
When I resample df3 to a lower frequency I don't get any resampling at all:
df5 = df3.groupby(['C']).resample('A', how={'A': np.mean, 'B': np.mean, 'D': 'ffill'})
df5.head()
Result:
B A D
C
A 2014-03-31 NaN NaN Pickles
2014-06-30 NaN NaN Pickles
2014-09-30 NaN NaN Pickles
2014-12-31 -0.7429617 -0.1065645 Pickles
2015-03-31 NaN NaN Pickles
I'm pretty sure that this has something to do with the mixed types because if I redo the annual down-sampling with just numerical columns everything works as expected:
df5b = df3[['A', 'B', 'C']].groupby(['C']).resample('A', how={'A': np.mean, 'B': np.mean})
df5b.head()
Result:
B A
C
A 2014-12-31 -0.7429617 -0.1065645
2015-12-31 -0.6245030 -0.3101057
B 2014-12-31 0.4213621 -0.0708263
2015-12-31 -0.0607028 0.0110456
But even when I switch to numerical types the resampling to higher frequency still doesn't work as I expected:
df4b = df3[['A', 'B', 'C']].groupby(['C']).resample('M', how={'A': 'mean', 'B': 'mean'})
df4b.head()
Results:
B A
C
A 2014-03-31 -0.4640906 -0.2435414
2014-04-30 NaN NaN
2014-05-31 NaN NaN
2014-06-30 -0.5626360 0.6679614
2014-07-31 NaN NaN
Which leaves me with two questions:
Even if you can't provide a full answer to both parts a partial solution or an answer to either question is appreciated.
When resampling from a lower frequency to a higher frequency I realized that I was specifying the how when I wanted to specify the fill_method. When I do so things seem to work.
df4c = df3.groupby(['C']).resample('M', fill_method='ffill')
df4c.head()
A B D
C
A 2014-03-31 -0.2435414 -0.4640906 Pickles
2014-04-30 -0.2435414 -0.4640906 Pickles
2014-05-31 -0.2435414 -0.4640906 Pickles
2014-06-30 0.6679614 -0.5626360 Pickles
2014-07-31 0.6679614 -0.5626360 Pickles
You get a much more limited set of interpolation choices but it does handle the mixed types.
When resampling to a lower frequency using no how option (I believe it defaults to mean) the down-sampling does work:
df5c =df3.groupby(['C']).resample('A')
df5c.head()
A B
C
A 2014-12-31 -0.1065645 -0.7429617
2015-12-31 -0.3101057 -0.6245030
B 2014-12-31 -0.0708263 0.4213621
2015-12-31 0.0110456 -0.0607028
Therefore it seems the problem seems to be with passing a dictionary of how options or one of the option choices, presumably ffill, but I'm not sure.
resample
and agg
Since pandas-1.0.0
, the how
and fill_method
keywords no longer exist.
Besides, the resample
method now returns a Resampler
object.
The solution is to define an aggregation rule using functions or function names associated to each column.
df.resample(period).agg(aggregation_rule)
More examples on aggregation rules in the documentation.
Prepare test data:
import numpy as np
import pandas as pd
dates = pd.date_range("2021-02-09", "2021-04-09", freq="1D")
df1 = pd.DataFrame(np.random.randn(dates.shape[0],2), index=dates, columns=list('AB'))
df1['C'] = 'A'
df1['D'] = 'Pickles'
df2 = pd.DataFrame(np.random.randn(dates.shape[0], 2), index=dates, columns=list('AB'))
df2['C'] = 'B'
df2['D'] = 'Ham'
df3 = pd.concat([df1, df2], axis=0)
print(df3)
Output:
A B C D
2021-02-09 2.591285 2.455686 A Pickles
2021-02-10 0.753461 -0.072643 A Pickles
2021-02-11 -0.351667 -0.025511 A Pickles
2021-02-12 -0.896730 0.004512 A Pickles
2021-02-13 -0.493139 -0.770514 A Pickles
... ... ... .. ...
2021-04-05 1.615935 1.152517 B Ham
2021-04-06 -0.067654 -0.858186 B Ham
2021-04-07 0.085587 -0.848542 B Ham
2021-04-08 -0.371983 0.088441 B Ham
2021-04-09 0.681501 0.235328 B Ham
[120 rows x 4 columns]
Resample per month:
agg_rules = { "A": "mean", "B": "sum", "C": "first", "D": "last",}
df4 = df3.resample("M").agg(agg_rules)
print(df4)
Output:
A B C D
2021-02-28 0.025987 3.886781 A Ham
2021-03-31 0.081423 -5.492928 A Ham
2021-04-30 0.239309 -3.344334 A Ham
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With