I have this expression in Mathematica:
(a^2 (alpha + beta)^2)/(b^2 + c^2) + (a (alpha + beta))/(b^2 + c^2) + 1
As you can see, the expression has a couple of subexpressions that repeat throughout it.
I want to be able to replace a/(b^2+c^2)
with d
and alpha+beta
with gamma
.
The final expression should then be:
1+d*gamma+a*d*gamma^2
I have much more complicated expressions where being able to do this would greatly simplify my work.
I have tried Googling this question, and I only find answers that use FactorTerms and ReplaceRepeated, but do not work consistently and for a more complicated expression like this one. I am hoping that someone here has the answer.
The hard part for the case at hand is the rule for d
. Perhaps, there are simpler ways to do it, but one way is to expand the powers to products, to make it work. Let's say this is your expression:
expr = (a^2 (alpha + beta)^2)/(b^2 + c^2) + (a (alpha + beta))/(b^2 + c^2) + 1
and these are the rules one would naively write:
rules = {a/(b^2 + c^2) -> d, alpha + beta -> gamma}
What we would like to do now is to expand powers to products, in both expr
and rules
. The problem is that even if we do, they will auto-evaluate back to powers. To prevent that, we'll need to wrap them into, for example, Hold
. Here is a function which will help us:
Clear[withExpandedPowers];
withExpandedPowers[expr_, f_: Hold] :=
Module[{times},
Apply[f,
Hold[expr] /. x_^(n_Integer?Positive) :>
With[{eval = times @@ Table[x, {n}]}, eval /; True] /.
times -> Times //.
HoldPattern[Times[left___, Times[middle__], right___]] :>
Times[left, middle, right]]];
For example:
In[39]:= withExpandedPowers[expr]
Out[39]= Hold[1+(a (alpha+beta))/(b b+c c)+((alpha+beta) (alpha+beta) a a)/(b b+c c)]
The following will then do the job:
In[40]:=
ReleaseHold[
withExpandedPowers[expr] //.
withExpandedPowers[Map[MapAt[HoldPattern, #, 1] &, rules], Identity]]
Out[40]= 1 + d gamma + a d gamma^2
We had to additionally wrap the l.h.s. of rules in HoldPattern
, to prevent products from collapsing back to powers there.
This is just one case where we had to fight the auto-simplification mechanism of Mathematica, but for this sort of problems this will be the main obstacle. I can't assess how robust this will be for larger and more complex expressions.
Using ReplaceRepeated:
(a^2 (alpha + beta)^2)/(b^2 + c^2) + (a (alpha + beta))/(b^2 + c^2) +
1 //. {a/(b^2 + c^2) -> d, alpha + beta -> gamma}
Or using TransformationFunctions:
FullSimplify[(a^2 (alpha + beta)^2)/(b^2 +
c^2) + (a (alpha + beta))/(b^2 + c^2) + 1,
TransformationFunctions -> {Automatic, # /.
a/(b^2 + c^2) -> d &, # /. alpha + beta -> gamma &}]
Both give:
1 + gamma (d + (a^2 gamma)/(b^2 + c^2))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With