I have a dataframe (in Python) as follows:
      A     B    C    D     E      F     G    H
0    T-1    2    3    -    M-7     2          2
1    T-2    5    4    2    M-7     4          3
2    T-3    -    -    3    M-7            9   4  
3    T-4    6    -    4    M-7     -      9   5
4    T-5    -    1    5    M-7     8          6
I would like to replace the dashes (excluding those in column A and E) with NaN.
I tried df.replace('-', np.nan).It ended up with replacing the entire cells of columns A and E as well. I guess I can use df[column_name].replace('-',np.nan) but then I would have to apply it for each column separately.
Is there any other way, which is efficient and will work for any number of columns with similar restrictions?
In [18]: df[df.columns.drop(['A','E'])] = \
             df[df.columns.drop(['A','E'])].replace('-', np.nan)
In [19]: df
Out[19]:
   A    B    C    D    E    F    G    H
0  a  T-1    a  NaN  M-7    a    a    a
1  b  T-2  NaN    b  M-7  NaN    b    b
2  c  T-3    c    c  M-7    c    c  NaN
3  d  T-4    d    d  M-7  NaN    d    d
4  e  T-5  NaN    e  M-7  NaN  NaN  NaN
                        This should work.
df = pd.DataFrame({'A': list('abcde'),
                  'B': ['T-1', 'T-2', 'T-3', 'T-4', 'T-5'],
                  'C': ['a', '-', 'c', 'd', '-'],
                  'D': ['-', 'b', 'c', 'd', 'e'],
                  'E': ['M-7', 'M-7', 'M-7', 'M-7', 'M-7'],
                  'F': ['a', '-', 'c', '-', '-'],
                  'G': ['a', 'b', 'c', 'd', '-'],
                  'H': ['a', 'b', '-', 'd', '-']
                  })
df = df.astype(str)
s = df.applymap(lambda x: re.sub(r'^-$', str(np.NaN), x))
Output:
   A    B    C    D    E    F    G    H
0  a  T-1    a  nan  M-7    a    a    a
1  b  T-2  nan    b  M-7  nan    b    b
2  c  T-3    c    c  M-7    c    c  nan
3  d  T-4    d    d  M-7  nan    d    d
4  e  T-5  nan    e  M-7  nan  nan  nan
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With