I want to use na.omit (data) for the following example dataset, but on a condition so as to remove rows with NAs only when they are present in lets say "more than 30%" of the columns.
data:
C1 C2 C3 C4 C5
Gene1 0.07 NA 0.05 0.07 0.07
Gene2 0.2 0.18 0.16 0.15 0.15
Gene3 NA 0.93 0.9 NA 0.92
Gene4 0.32 0.05 0.12 0.13 0.05
Gene5 0.44 0.53 0.46 0.03 0.47
Gene6 NA 0.34 NA 0.8 NA
Gene7 0.49 0.55 0.67 0.49 0.89
Gene8 0.25 NA 0.49 NA NA
Gene9 0.1 0.1 0.05 NA 0.09
So the resulting file should be as follows:
C1 C2 C3 C4 C5
Gene1 0.07 NA 0.05 0.07 0.07
Gene2 0.2 0.18 0.16 0.15 0.15
Gene4 0.32 0.05 0.12 0.13 0.05
Gene5 0.44 0.53 0.46 0.03 0.47
Gene7 0.49 0.55 0.67 0.49 0.89
Gene9 0.1 0.1 0.05 NA 0.09
Thanks for the help!
You can subset based on the row sums of NA values:
test[!rowSums(is.na(test)) > ncol(test)*.3,]
C1 C2 C3 C4 C5
Gene1 0.07 NA 0.05 0.07 0.07
Gene2 0.20 0.18 0.16 0.15 0.15
Gene4 0.32 0.05 0.12 0.13 0.05
Gene5 0.44 0.53 0.46 0.03 0.47
Gene7 0.49 0.55 0.67 0.49 0.89
Gene9 0.10 0.10 0.05 NA 0.09
Here is another version with Reduce
df1[!Reduce(`+`, lapply(df1, is.na)) > ncol(df1)*0.3,]
# C1 C2 C3 C4 C5
#Gene1 0.07 NA 0.05 0.07 0.07
#Gene2 0.20 0.18 0.16 0.15 0.15
#Gene4 0.32 0.05 0.12 0.13 0.05
#Gene5 0.44 0.53 0.46 0.03 0.47
#Gene7 0.49 0.55 0.67 0.49 0.89
#Gene9 0.10 0.10 0.05 NA 0.09
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With