Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to read strange csv files in Pandas?

Tags:

python

pandas

csv

I would like to read sample csv file shown in below

--------------
 |A|B|C| 
--------------
 |1|2|3| 
--------------
 |4|5|6| 
--------------
 |7|8|9| 
--------------

I tried

pd.read_csv("sample.csv",sep="|")

But it didn't work well.

How can I read this csv?

like image 509
Heisenberg Avatar asked Sep 13 '16 05:09

Heisenberg


2 Answers

You can add parameter comment to read_csv and then remove columns with NaN by dropna:

import pandas as pd
import io

temp=u"""--------------
|A|B|C|
--------------
|1|2|3|
--------------
|4|5|6|
--------------
|7|8|9|
--------------"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), sep="|", comment='-').dropna(axis=1, how='all')

print (df)
   A  B  C
0  1  2  3
1  4  5  6
2  7  8  9

More general solution:

import pandas as pd
import io

temp=u"""--------------
|A|B|C|
--------------
|1|2|3|
--------------
|4|5|6|
--------------
|7|8|9|
--------------"""
#after testing replace io.StringIO(temp) to filename
#separator is char which is NOT in csv
df = pd.read_csv(io.StringIO(temp), sep="^", comment='-')

#remove first and last | in data and in column names
df.iloc[:,0] = df.iloc[:,0].str.strip('|') 
df.columns = df.columns.str.strip('|')
#split column names
cols = df.columns.str.split('|')[0]
#split data
df = df.iloc[:,0].str.split('|', expand=True)
df.columns = cols
print (df)
   A  B  C
0  1  2  3
1  4  5  6
2  7  8  9
like image 72
jezrael Avatar answered Nov 12 '22 06:11

jezrael


Try "import csv" rather than directly use pandas.

import csv

easy_csv = []

with open('sample.csv', 'rb') as csvfile:
   test = csv.reader(csvfile, delimiter=' ', quotechar='|')
   for row in test:
      row_preprocessed = """ handling rows at here; removing |, ignoring row that has ----"""
      easy_csv.append([row_preprocessed])

After this preprocessing, you can save it into comma separated csv files to easily handle on pandas.

like image 1
JonghoKim Avatar answered Nov 12 '22 04:11

JonghoKim