I have a big distributed file on HDFS and each time I use sqlContext with spark-csv package, it first loads the entire file which takes quite some time.
df = sqlContext.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load("file_path")
now as I just want to do some quick check at times, all I need is few/ any n rows of the entire file.
df_n = sqlContext.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load("file_path").take(n)
df_n = sqlContext.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load("file_path").head(n)
but all these run after the file load is done. Can't I just restrict the number of rows while reading the file itself ? I am referring to n_rows equivalent of pandas in spark-csv, like:
pd_df = pandas.read_csv("file_path", nrows=20)
Or it might be the case that spark does not actually load the file, the first step, but in this case, why is my file load step taking too much time then?
I want
df.count()
to give me only n
and not all rows, is it possible ?
In Spark/PySpark, you can use show() action to get the top/first N (5,10,100 ..) rows of the DataFrame and display them on a console or a log, there are also several Spark Actions like take() , tail() , collect() , head() , first() that return top and last n rows as a list of Rows (Array[Row] for Scala).
You can use limit(n)
.
sqlContext.format('com.databricks.spark.csv') \
.options(header='true', inferschema='true').load("file_path").limit(20)
This will just load 20 rows.
My understanding is that reading just a few lines is not supported by spark-csv module directly, and as a workaround you could just read the file as a text file, take as many lines as you want and save it to some temporary location. With the lines saved, you could use spark-csv to read the lines, including inferSchema
option (that you may want to use given you are in exploration mode).
val numberOfLines = ...
spark.
read.
text("myfile.csv").
limit(numberOfLines).
write.
text(s"myfile-$numberOfLines.csv")
val justFewLines = spark.
read.
option("inferSchema", true). // <-- you are in exploration mode, aren't you?
csv(s"myfile-$numberOfLines.csv")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With