I need to use dask to load multiple parquet files with identical schema into a single dataframe. This works when they are all in the same directory, but not when they're in separate directories.
For example:
import fastparquet
pfile = fastparquet.ParquetFile(['data/data1.parq', 'data/data2.parq'])
works just fine, but if I copy data2.parq
to a different directory, the following does not work:
pfile = fastparquet.ParquetFile(['data/data1.parq', 'data2/data2.parq'])
The traceback I get is the following:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-11-b3d381f14edc> in <module>()
----> 1 pfile = fastparquet.ParquetFile(['data/data1.parq', 'data2/data2.parq'])
~/anaconda/envs/hv/lib/python3.6/site-packages/fastparquet/api.py in __init__(self, fn, verify, open_with, sep)
82 if isinstance(fn, (tuple, list)):
83 basepath, fmd = metadata_from_many(fn, verify_schema=verify,
---> 84 open_with=open_with)
85 self.fn = sep.join([basepath, '_metadata']) # effective file
86 self.fmd = fmd
~/anaconda/envs/hv/lib/python3.6/site-packages/fastparquet/util.py in metadata_from_many(file_list, verify_schema, open_with)
164 else:
165 raise ValueError("Merge requires all PaquetFile instances or none")
--> 166 basepath, file_list = analyse_paths(file_list, sep)
167
168 if verify_schema:
~/anaconda/envs/hv/lib/python3.6/site-packages/fastparquet/util.py in analyse_paths(file_list, sep)
221 if len({tuple([p.split('=')[0] for p in parts[l:-1]])
222 for parts in path_parts_list}) > 1:
--> 223 raise ValueError('Partitioning directories do not agree')
224 for path_parts in path_parts_list:
225 for path_part in path_parts[l:-1]:
ValueError: Partitioning directories do not agree
I get the same error when using dask.dataframe.read_parquet
, which I assume uses the same ParquetFile
object.
How can I load multiple files from different directories? Putting all the files I need to load into the same directory is not an option.
This does work in fastparquet on master, if using either absolute paths or explicit relative paths:
pfile = fastparquet.ParquetFile(['./data/data1.parq', './data2/data2.parq'])
The need for the leading ./
should be considered a bug - see the issue.
The Dask API documentation states:
To read from multiple files you can pass a globstring or a list of paths [...].
The following solution allows for different columns in the individual parquet files, which is not possible for this answer.It will be parallized, because it is a native dask command.
import dask.dataframe as dd
files = ['temp/part.0.parquet', 'temp2/part.1.parquet']
df = dd.read_parquet(files)
df.compute()
A workaround would be to read each chunk separately and pass to dask.dataframe.from_delayed
. This doesn't do exactly the same metadata handling that read_parquet
does (below 'index'
should be the index), but otherwise should work.
import dask.dataframe as dd
from dask import delayed
from fastparquet import ParquetFile
@delayed
def load_chunk(pth):
return ParquetFile(pth).to_pandas()
files = ['temp/part.0.parquet', 'temp2/part.1.parquet']
df = dd.from_delayed([load_chunk(f) for f in files])
df.compute()
Out[38]:
index a
0 0 1
1 1 2
0 2 3
1 3 4
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With