So normaly I do stuff like:
std::ifstream stream;
int buff_length = 8192;
boost::shared_array<char> buffer( new char[buff_length]);
stream.open( path.string().c_str(), std::ios_base::binary);
while (stream)
{
stream.read(buffer.get(), buff_length);
//boost::asio::write(*socket, boost::asio::buffer(buffer.get(), stream.gcount()));
}
stream.close();
I wonder how to read into unsigned char buffer ( boost::shared_array<unsigned char> buffer( new unsigned char[buff_length]);)
In a simplest form:
std::vector<unsigned char> vec(
std::istreambuf_iterator<char>(std::cin)
, std::istreambuf_iterator<char>()
);
Replace std::cin with your actual stream.
The above is likely to do more than one memory allocation (for files larger than a very few bytes) because std::istreambuf_iterator<> is an input-iterator, not a random-access or a forward iterator, so the length of the file can't be measured by subtracting iterators like end - begin or calling std::distance(begin, end). It can be reduced to one memory allocation if the vector is created first empty, then std::vector<>::reserve() is called to allocate memory for the file length and finally range insert is called vec.insert(vec.end(), beg, end) with beg and end being std::istreambuf_iterator<> as above to read the entire file.
If the file size is more then a few kilo-bytes it may be most efficient to map it into the process memory to avoid copying memory from the kernel to user-space.
The reason std::istreambuf_iterator<char> is used is because the implementation uses std::char_traits<> which normally has specializations only for char and wchar_t. Regardless, the C and C++ standards require all char types to have the same binary layout with no padding bits, so conversions between char, unsigned char and signed char (which are all distinct types, unlike signed int and int being the same type) preserve bit patterns and thus are safe.
[basic.fundamental/1]
Plain
char,signed char, andunsigned charare three distinct types, collectively called narrow character types. Achar, asigned char, and anunsigned charoccupy the same amount of storage and have the same alignment requirements; that is, they have the same object representation... For narrow character types, all bits of the object representation participate in the value representation... For unsigned narrow character types, each possible bit pattern of the value representation represents a distinct number. These requirements do not hold for other types. In any particular implementation, a plaincharobject can take on either the same values as asigned charor anunsigned char; which one is implementation-defined. For each valueiof typeunsigned charin the range 0 to 255 inclusive, there exists a valuejof typecharsuch that the result of an integral conversion fromitocharisj, and the result of an integral conversion fromjtounsigned charisi.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With