I want to update a model with new entities. I'm loading the "pt" NER model, and trying to update it. Before doing anything, I tried this phrase: "meu nome é Mário e hoje eu vou para academia". (in English this phrase is "my name is Mário and today I'm going to go to gym). Before the whole process I got this:
Entities [('Mário', 'PER')]
Tokens [('meu', '', 2), ('nome', '', 2), ('é', '', 2), ('Mário', 'PER', 3), ('e', '', 2), ('hoje', '', 2), ('eu', '', 2), ('vou', '', 2), ('pra', '', 2), ('academia', '', 2)]
Ok, Mário is a name and it's correct. But I want the model recognize "hoje (today)" as DATE, then I ran the script below.
After I ran the script, I've tried the same setence and got this:
Entities [('hoje', 'DATE')]
Tokens [('meu', '', 2), ('nome', '', 2), ('é', '', 2), ('Mário', '', 2), ('e', '', 2), ('hoje', 'DATE', 3), ('eu', '', 2), ('vou', '', 2), ('pra', '', 2), ('academia', '', 2)]
The model is recognizing "hoje" as DATE, but totally forgot about Mário as Person.
from __future__ import unicode_literals, print_function
import plac
import random
from pathlib import Path
import spacy
from spacy.util import minibatch, compounding
# training data
TRAIN_DATA = [
("Infelizmente não, eu briguei com meus amigos hoje", {"entities": [(45, 49, "DATE")]}),
("hoje foi um bom dia.", {"entities": [(0, 4, "DATE")]}),
("ah não sei, hoje foi horrível", {"entities": [(12, 16, "DATE")]}),
("hoje eu briguei com o Mário", {"entities": [(0, 4, "DATE")]})
]
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int),
)
def main(model="pt", output_dir="/model", n_iter=100):
"""Load the model, set up the pipeline and train the entity recognizer."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank("pt") # create blank Language class
print("Created blank 'en' model")
doc = nlp("meu nome é Mário e hoje eu vou pra academia")
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# create the built-in pipeline components and add them to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if "ner" not in nlp.pipe_names:
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner, last=True)
# otherwise, get it so we can add labels
else:
ner = nlp.get_pipe("ner")
# add labels
for _, annotations in TRAIN_DATA:
for ent in annotations.get("entities"):
ner.add_label(ent[2])
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
with nlp.disable_pipes(*other_pipes): # only train NER
# reset and initialize the weights randomly – but only if we're
# training a new model
if model is None:
nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(
texts, # batch of texts
annotations, # batch of annotations
drop=0.5, # dropout - make it harder to memorise data
losses=losses,
)
print("Losses", losses)
# test the trained model
# for text, _ in TRAIN_DATA:
doc = nlp("meu nome é Mário e hoje eu vou pra academia")
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
# for text, _ in TRAIN_DATA:
# doc = nlp2(text)
# print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
# print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
In the training data you need to mention "Mario" as "PER". If you miss it, the model will learn from the new training data to exclude "Mario" as "PER".
(NOTE: You should mention all the entities present in the sentence in the training data not only the new ones.)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With