I would like to plot the ROC curve for the multiclass case for my own dataset. By the documentation I read that the labels must been binary(I have 5 labels from 1 to 5), so I followed the example provided in the documentation:
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
tfidf_vect= TfidfVectorizer(use_idf=True, smooth_idf=True, sublinear_tf=False, ngram_range=(2,2))
from sklearn.cross_validation import train_test_split, cross_val_score
import pandas as pd
df = pd.read_csv('path/file.csv',
header=0, sep=',', names=['id', 'content', 'label'])
X = tfidf_vect.fit_transform(df['content'].values)
y = df['label'].values
# Binarize the output
y = label_binarize(y, classes=[1,2,3,4,5])
n_classes = y.shape[1]
# Add noisy features to make the problem harder
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
# shuffle and split training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33
,random_state=0)
# Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# Plot of a ROC curve for a specific class
plt.figure()
plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
# Plot ROC curve
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]))
for i in range(n_classes):
plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()
The problem with this is that this aproach never finish. Any idea of how to plot this ROC curve for this dataset?.
This version never finishes because this line:
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state))
The svm classifier takes a really long time to finish, use a different classifier like AdaBoost or another of your choice:
classifier = OneVsRestClassifier(AdaBoostClassifier())
Remember to add an import:
from sklearn.ensemble import AdaBoostClassifier
Remove this code, it's useless:
# Add noisy features to make the problem harder
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
Instead just add:
random_state = 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With