Is it possible to plot the random intercept or slope of a mixed model when it has more than one predictor?
With one predictor I would do like this:
#generate one response, two predictors and one factor (random effect)
resp<-runif(100,1, 100)
pred1<-c(resp[1:50]+rnorm(50, -10, 10),resp[1:50]+rnorm(50, 20, 5))
pred2<-resp+rnorm(100, -10, 10)
RF1<-gl(2, 50)
#gamm
library(mgcv)
mod<-gamm(resp ~ pred1, random=list(RF1=~1))
plot(pred1, resp, type="n")
for (i in ranef(mod$lme)[[1]]) {
abline(fixef(mod$lme)[1]+i, fixef(mod$lme)[2])
}
#lmer
library(lme4)
mod<-lmer(resp ~ pred1 + (1|RF1))
plot(pred1, resp, type="n")
for (i in ranef(mod)[[1]][,1]) {
abline(fixef(mod)[1]+i, fixef(mod)[2])
}
But what if I have a model like this instead?:
mod<-gamm(resp ~ pred1 + pred2, random=list(RF1=~1))
Or with lmer
mod<-lmer(resp ~ pred1 + pred2 + (1|RF1))
Should I consider all the coefficients or only the ones of the variable that I'm plotting?
Thanks
## generate one response, two predictors and one factor (random effect)
set.seed(101)
resp <- runif(100,1,100)
pred1<- rnorm(100,
mean=rep(resp[1:50],2)+rep(c(-10,20),each=50),
sd=rep(c(10,5),each=50))
pred2<- rnorm(100, resp-10, 10)
NOTE that you should probably not be trying to fit a random
effect for an grouping variable with only two levels -- this will
almost invariably result in an estimated random-effect variance of zero,
which will in turn put your predicted lines right on top of each
other -- I'm switching from gl(2,50)
to gl(10,10)
...
RF1<-gl(10,10)
d <- data.frame(resp,pred1,pred2,RF1)
#lmer
library(lme4)
mod <- lmer(resp ~ pred1 + pred2 + (1|RF1),data=d)
The development version of lme4
has a predict()
function
that makes this a little easier ...
pred1
with pred2
equal to its mean,
and vice versa. This is all a little bit cleverer than it needs
to be, since it generates all the values for both focal predictors
and plots them with ggplot in one go ...()
nd <- with(d,
rbind(data.frame(expand.grid(RF1=levels(RF1),
pred1=seq(min(pred1),max(pred1),length=51)),
pred2=mean(pred2),focus="pred1"),
data.frame(expand.grid(RF1=levels(RF1),
pred2=seq(min(pred2),max(pred2),length=51)),
pred1=mean(pred1),focus="pred2")))
nd$val <- with(nd,pred1[focus=="pred1"],pred2[focus=="pred2"])
pframe <- data.frame(nd,resp=predict(mod,newdata=nd))
library(ggplot2)
ggplot(pframe,aes(x=val,y=resp,colour=RF1))+geom_line()+
facet_wrap(~focus,scale="free")
pred1
and generating predictions for a (small/discrete) range of pred2
values ...()
nd <- with(d,
data.frame(expand.grid(RF1=levels(RF1),
pred1=seq(min(pred1),max(pred1),length=51),
pred2=seq(-20,100,by=40))))
pframe <- data.frame(nd,resp=predict(mod,newdata=nd))
ggplot(pframe,aes(x=pred1,y=resp,colour=RF1))+geom_line()+
facet_wrap(~pred2,nrow=1)
You might want to set scale="free"
in the last facet_wrap()
... or
use facet_grid(~pred2,labeller=label_both)
For presentation you might want to replace the colour
aesthetic,
with group
, if all you want to do is distinguish among groups
(i.e. plot separate lines) rather than identify them ...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With