Plotting 2 distplots or scatterplots in a subplot works great:
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd %matplotlib inline # create df x = np.linspace(0, 2 * np.pi, 400) df = pd.DataFrame({'x': x, 'y': np.sin(x ** 2)}) # Two subplots f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(df.x, df.y) ax1.set_title('Sharing Y axis') ax2.scatter(df.x, df.y) plt.show()
But when I do the same with an lmplot
instead of either of the other types of charts I get an error:
AttributeError: 'AxesSubplot' object has no attribute 'lmplot'
Is there any way to plot these chart types side by side?
How do I plot two countplot graphs side by side in Seaborn using Matplotlib? To create two graphs, we can use nrows=1, ncols=2 with figure size (7, 7). Create a dataframe with keys, col1 and col2, using Pandas. Use countplot() to show the counts of observations in each categorical bin using bars.
In Seaborn, we will plot multiple graphs in a single window in two ways. First with the help of Facetgrid() function and other by implicit with the help of matplotlib. data: Tidy dataframe where each column is a variable and each row is an observation.
You can use the following basic syntax to create subplots in the seaborn data visualization library in Python: #define dimensions of subplots (rows, columns) fig, axes = plt. subplots(2, 2) #create chart in each subplot sns. boxplot(data=df, x='team', y='points', ax=axes[0,0]) sns.
You get that error because matplotlib and its objects are completely unaware of seaborn functions.
Pass your axes objects (i.e., ax1
and ax2
) to seaborn.regplot
or you can skip defining those and use the col
kwarg of seaborn.lmplot
With your same imports, pre-defining your axes and using regplot
looks like this:
# create df x = np.linspace(0, 2 * np.pi, 400) df = pd.DataFrame({'x': x, 'y': np.sin(x ** 2)}) df.index.names = ['obs'] df.columns.names = ['vars'] idx = np.array(df.index.tolist(), dtype='float') # make an array of x-values # call regplot on each axes fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True) sns.regplot(x=idx, y=df['x'], ax=ax1) sns.regplot(x=idx, y=df['y'], ax=ax2)
Using lmplot requires your dataframe to be tidy. Continuing from the code above:
tidy = ( df.stack() # pull the columns into row variables .to_frame() # convert the resulting Series to a DataFrame .reset_index() # pull the resulting MultiIndex into the columns .rename(columns={0: 'val'}) # rename the unnamed column ) sns.lmplot(x='obs', y='val', col='vars', hue='vars', data=tidy)
If the intention of using lmplot
is to use hue
for two different sets of variables, regplot
may not be sufficient without some tweaks. In order to use of seaborn's lmplot
hue
argument in two side-by-side plots, one possible solution is:
def hue_regplot(data, x, y, hue, palette=None, **kwargs): from matplotlib.cm import get_cmap regplots = [] levels = data[hue].unique() if palette is None: default_colors = get_cmap('tab10') palette = {k: default_colors(i) for i, k in enumerate(levels)} for key in levels: regplots.append( sns.regplot( x=x, y=y, data=data[data[hue] == key], color=palette[key], **kwargs ) ) return regplots
This function give result similar to lmplot
(with hue
option), but accepts the ax
argument, necessary for creating a composite figure. An example of usage is
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd %matplotlib inline rnd = np.random.default_rng(1234567890) # create df x = np.linspace(0, 2 * np.pi, 400) df = pd.DataFrame({'x': x, 'y': np.sin(x ** 2), 'color1': rnd.integers(0,2, size=400), 'color2': rnd.integers(0,3, size=400)}) # color for exemplification # Two subplots f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) # ax1.plot(df.x, df.y) ax1.set_title('Sharing Y axis') # ax2.scatter(df.x, df.y) hue_regplot(data=df, x='x', y='y', hue='color1', ax=ax1) hue_regplot(data=df, x='x', y='y', hue='color2', ax=ax2) plt.show()
Regplots with Hue
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With