With RODBC, there were functions like sqlUpdate(channel, dat, ...)
that allowed you pass dat = data.frame(...)
instead of having to construct your own SQL string.
However, with R's DBI, all I see are functions like dbSendQuery(conn, statement, ...)
which only take a string statement
and gives no opportunity to specify a data.frame
directly.
So how to UPDATE
using a data.frame
with DBI?
Really late, my answer, but maybe still helpful...
There is no single function (I know) in the DBI/odbc package but you can replicate the update behavior using a prepared update statement (which should work faster than RODBC's sqlUpdate
since it sends the parameter values as a batch to the SQL server:
library(DBI)
library(odbc)
con <- dbConnect(odbc::odbc(), driver="{SQL Server Native Client 11.0}", server="dbserver.domain.com\\default,1234", Trusted_Connection = "yes", database = "test") # assumes Microsoft SQL Server
dbWriteTable(con, "iris", iris, row.names = TRUE) # create and populate a table (adding the row names as a separate columns used as row ID)
update <- dbSendQuery(con, 'update iris set "Sepal.Length"=?, "Sepal.Width"=?, "Petal.Length"=?, "Petal.Width"=?, "Species"=? WHERE row_names=?')
# create a modified version of `iris`
iris2 <- iris
iris2$Sepal.Length <- 5
iris2$Petal.Width[2] <- 1
iris2$row_names <- rownames(iris) # use the row names as unique row ID
dbBind(update, iris2) # send the updated data
dbClearResult(update) # release the prepared statement
# now read the modified data - you will see the updates did work
data1 <- dbReadTable(con, "iris")
dbDisconnect(con)
This works only if you have a primary key which I created in the above example by using the row names which are a unique number increased by one for each row...
For more information about the odbc
package I have used in the DBI dbConnect
statement see: https://github.com/rstats-db/odbc
Building on R Yoda's answer, I made myself the helper function below. This allows using a dataframe to specify update conditions.
While I built this to run transaction updates (i.e. single rows), it can in theory update multiple rows passing a condition. However, that's not the same as updating multiple rows using an input dataframe. Maybe somebody else can build on this...
dbUpdateCustom = function(x, key_cols, con, schema_name, table_name) {
if (nrow(x) != 1) stop("Input dataframe must be exactly 1 row")
if (!all(key_cols %in% colnames(x))) stop("All columns specified in 'key_cols' must be present in 'x'")
# Build the update string --------------------------------------------------
df_key <- dplyr::select(x, one_of(key_cols))
df_upt <- dplyr::select(x, -one_of(key_cols))
set_str <- purrr::map_chr(colnames(df_upt), ~glue::glue_sql('{`.x`} = {x[[.x]]}', .con = con))
set_str <- paste(set_str, collapse = ", ")
where_str <- purrr::map_chr(colnames(df_key), ~glue::glue_sql("{`.x`} = {x[[.x]]}", .con = con))
where_str <- paste(where_str, collapse = " AND ")
update_str <- glue::glue('UPDATE {schema_name}.{table_name} SET {set_str} WHERE {where_str}')
# Execute ------------------------------------------------------------------
query_res <- DBI::dbSendQuery(con, update_str)
DBI::dbClearResult(query_res)
return (invisible(TRUE))
}
Where
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With