I'm looking for a simple way of parsing complex text files into a pandas DataFrame. Below is a sample file, what I want the result to look like after parsing, and my current method.
Is there any way to make it more concise/faster/more pythonic/more readable?
I've also put this question on Code Review.
I eventually wrote a blog article to explain this to beginners.
Here is a sample file:
Sample text A selection of students from Riverdale High and Hogwarts took part in a quiz. This is a record of their scores. School = Riverdale High Grade = 1 Student number, Name 0, Phoebe 1, Rachel Student number, Score 0, 3 1, 7 Grade = 2 Student number, Name 0, Angela 1, Tristan 2, Aurora Student number, Score 0, 6 1, 3 2, 9 School = Hogwarts Grade = 1 Student number, Name 0, Ginny 1, Luna Student number, Score 0, 8 1, 7 Grade = 2 Student number, Name 0, Harry 1, Hermione Student number, Score 0, 5 1, 10 Grade = 3 Student number, Name 0, Fred 1, George Student number, Score 0, 0 1, 0
Here is what I want the result to look like after parsing:
Name Score School Grade Student number Hogwarts 1 0 Ginny 8 1 Luna 7 2 0 Harry 5 1 Hermione 10 3 0 Fred 0 1 George 0 Riverdale High 1 0 Phoebe 3 1 Rachel 7 2 0 Angela 6 1 Tristan 3 2 Aurora 9
Here is how I currently parse it:
import re import pandas as pd def parse(filepath): """ Parse text at given filepath Parameters ---------- filepath : str Filepath for file to be parsed Returns ------- data : pd.DataFrame Parsed data """ data = [] with open(filepath, 'r') as file: line = file.readline() while line: reg_match = _RegExLib(line) if reg_match.school: school = reg_match.school.group(1) if reg_match.grade: grade = reg_match.grade.group(1) grade = int(grade) if reg_match.name_score: value_type = reg_match.name_score.group(1) line = file.readline() while line.strip(): number, value = line.strip().split(',') value = value.strip() dict_of_data = { 'School': school, 'Grade': grade, 'Student number': number, value_type: value } data.append(dict_of_data) line = file.readline() line = file.readline() data = pd.DataFrame(data) data.set_index(['School', 'Grade', 'Student number'], inplace=True) # consolidate df to remove nans data = data.groupby(level=data.index.names).first() # upgrade Score from float to integer data = data.apply(pd.to_numeric, errors='ignore') return data class _RegExLib: """Set up regular expressions""" # use https://regexper.com to visualise these if required _reg_school = re.compile('School = (.*)\n') _reg_grade = re.compile('Grade = (.*)\n') _reg_name_score = re.compile('(Name|Score)') def __init__(self, line): # check whether line has a positive match with all of the regular expressions self.school = self._reg_school.match(line) self.grade = self._reg_grade.match(line) self.name_score = self._reg_name_score.search(line) if __name__ == '__main__': filepath = 'sample.txt' data = parse(filepath) print(data)
In Python, there is a built-in module called parse which provides an interface between the Python internal parser and compiler, where this module allows the python program to edit the small fragments of code and create the executable program from this edited parse tree of python code.
This answer has received quite some attention so I felt to add another possibility, namely a parsing option. Here we could use a PEG
parser instead (e.g. parsimonious
) in combination with a NodeVisitor
class:
from parsimonious.grammar import Grammar from parsimonious.nodes import NodeVisitor import pandas as pd grammar = Grammar( r""" schools = (school_block / ws)+ school_block = school_header ws grade_block+ grade_block = grade_header ws name_header ws (number_name)+ ws score_header ws (number_score)+ ws? school_header = ~"^School = (.*)"m grade_header = ~"^Grade = (\d+)"m name_header = "Student number, Name" score_header = "Student number, Score" number_name = index comma name ws number_score = index comma score ws comma = ws? "," ws? index = number+ score = number+ number = ~"\d+" name = ~"[A-Z]\w+" ws = ~"\s*" """ ) tree = grammar.parse(data) class SchoolVisitor(NodeVisitor): output, names = ([], []) current_school, current_grade = None, None def _getName(self, idx): for index, name in self.names: if index == idx: return name def generic_visit(self, node, visited_children): return node.text or visited_children def visit_school_header(self, node, children): self.current_school = node.match.group(1) def visit_grade_header(self, node, children): self.current_grade = node.match.group(1) self.names = [] def visit_number_name(self, node, children): index, name = None, None for child in node.children: if child.expr.name == 'name': name = child.text elif child.expr.name == 'index': index = child.text self.names.append((index, name)) def visit_number_score(self, node, children): index, score = None, None for child in node.children: if child.expr.name == 'index': index = child.text elif child.expr.name == 'score': score = child.text name = self._getName(index) # build the entire entry entry = (self.current_school, self.current_grade, index, name, score) self.output.append(entry) sv = SchoolVisitor() sv.visit(tree) df = pd.DataFrame.from_records(sv.output, columns = ['School', 'Grade', 'Student number', 'Name', 'Score']) print(df)
Well then, watching Lord of the Rings the xth time, I had to bridge some time to the very finale:
^ School\s*=\s*(?P<school_name>.+) (?P<school_content>[\s\S]+?) (?=^School|\Z)
^ Grade\s*=\s*(?P<grade>.+) (?P<students>[\s\S]+?) (?=^Grade|\Z)
^ Student\ number,\ Name[\n\r] (?P<student_names>(?:^\d+.+[\n\r])+) \s* ^ Student\ number,\ Score[\n\r] (?P<student_scores>(?:^\d+.+[\n\r])+)
The rest is a generator expression which is then fed into the DataFrame
constructor (along with the column names).
import pandas as pd, re rx_school = re.compile(r''' ^ School\s*=\s*(?P<school_name>.+) (?P<school_content>[\s\S]+?) (?=^School|\Z) ''', re.MULTILINE | re.VERBOSE) rx_grade = re.compile(r''' ^ Grade\s*=\s*(?P<grade>.+) (?P<students>[\s\S]+?) (?=^Grade|\Z) ''', re.MULTILINE | re.VERBOSE) rx_student_score = re.compile(r''' ^ Student\ number,\ Name[\n\r] (?P<student_names>(?:^\d+.+[\n\r])+) \s* ^ Student\ number,\ Score[\n\r] (?P<student_scores>(?:^\d+.+[\n\r])+) ''', re.MULTILINE | re.VERBOSE) result = ((school.group('school_name'), grade.group('grade'), student_number, name, score) for school in rx_school.finditer(string) for grade in rx_grade.finditer(school.group('school_content')) for student_score in rx_student_score.finditer(grade.group('students')) for student in zip(student_score.group('student_names')[:-1].split("\n"), student_score.group('student_scores')[:-1].split("\n")) for student_number in [student[0].split(", ")[0]] for name in [student[0].split(", ")[1]] for score in [student[1].split(", ")[1]] ) df = pd.DataFrame(result, columns = ['School', 'Grade', 'Student number', 'Name', 'Score']) print(df)
rx_school = re.compile(r'^School\s*=\s*(?P<school_name>.+)(?P<school_content>[\s\S]+?)(?=^School|\Z)', re.MULTILINE) rx_grade = re.compile(r'^Grade\s*=\s*(?P<grade>.+)(?P<students>[\s\S]+?)(?=^Grade|\Z)', re.MULTILINE) rx_student_score = re.compile(r'^Student number, Name[\n\r](?P<student_names>(?:^\d+.+[\n\r])+)\s*^Student number, Score[\n\r](?P<student_scores>(?:^\d+.+[\n\r])+)', re.MULTILINE)
School Grade Student number Name Score 0 Riverdale High 1 0 Phoebe 3 1 Riverdale High 1 1 Rachel 7 2 Riverdale High 2 0 Angela 6 3 Riverdale High 2 1 Tristan 3 4 Riverdale High 2 2 Aurora 9 5 Hogwarts 1 0 Ginny 8 6 Hogwarts 1 1 Luna 7 7 Hogwarts 2 0 Harry 5 8 Hogwarts 2 1 Hermione 10 9 Hogwarts 3 0 Fred 0 10 Hogwarts 3 1 George 0
import timeit print(timeit.timeit(makedf, number=10**4)) # 11.918397722000009 s
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With