I have a user-own metric to implement as follows:
def metric(pred:pd.DataFrame(), valid:pd.DataFrame()):
date_begin = valid.dt.min()
date_end = valid.dt.max()
x = valid[valid.label == 1].dt.min()
# p
p_n_tpp_df = valid[(valid.dt >= x) &\
(valid.dt <= x + timedelta(days=30)) &\
(p_n_tpp_df.label == 1)]
p_n_pp_df = valid[(valid.dt >= date_begin + timedelta(days=30)) &\
(valid.dt <= date_end + timedelta(days=30)) &\
(p_n_tpp_df.label == 1)]
p_n_tpp = len([x for x in pred.serial_number.values\
if x in p_n_tpp_df.serial_number.unique()])
p_n_pp = len([x for x in pred.serial_number.values\
if x in p_n_pp_df.serial_number.unique()])
p = p_n_tpp / p_n_pp
print('p: ', p)
# r
p_n_tpr_df = valid[(valid.dt >= date_begin - timedelta(days=30)) &\
(valid.dt <= date_end - timedelta(days=30)) &\
(p_n_tpr_df.label == 1)]
p_n_pr_df = valid[(valid.dt >= date_begin) &\
(valid.dt <= date_end) &\
(p_n_pr_df.label == 1)]
p_n_tpr = len([x for x in pred.serial_number.values\
if x in p_n_tpr_df.serial_number.unique()])
p_n_pr = len([x for x in pred.serial_number.values\
if x in p_n_pr_df.serial_number.unique()])
r = p_n_tpr / p_n_pr
print('p: ', r)
m = 2 * p * r / (p + r)
return m
The pd.DataFrame()
of pred
and valid
have the same columns and dt
has no intersections.
And the all the values of serial_number
in valid
is a subset of all the values of serial_number
in pred
.
The label
column only has 2 values: 0 or 1.
Here is the sample of pred
and valid
is as follows:
print(pred.head(3))
serial_number dt label
0 123 2011-03-21 1
1 52 2011-03-22 0
2 12 2011-03-01 1
..., ...
print(pred.info())
Int64Index: 10000000 entries,
Data columns (total 3 columns):
serial_number int32
dt datetimes64[ns]
label int8
..., ...
print(valid.head(3))
serial_number dt label
0 324 2011-04-22 1
1 52 2011-04-22 0
2 14 2011-04-01 1
..., ...
print(valid.info())
Int64Index: 10000000 entries,
Data columns (total 3 columns):
serial_number int32
dt datetimes64[ns]
label int8
And the size of input pd.DataFrame
is about 10, 000, 000 samples and 3 features.
When I try to use it to calculate this metric, it is really slow and time spending is more than 2 hours on Intel 9600KF.
So I am wondering how to optimize such code on time cost.
Thanks in advance.
Optimize Program Algorithm For any code, you should always allocate some time to think the right algorithm to use. So, the first task is to select and improve the algorithm which will be frequently used in the code. 2. Avoid Type Conversion Whenever possible, plan to use the same type of variables for processing.
Here is the biggest performance win in the code that you have:
len([x for x in pred.serial_number.values\
if x in p_n_tpr_df.serial_number.unique()])
Any line that looks like this is getting the size of the set intersection of pred.serial_number
and p_n_tpr_df.serial_number
. Using numpy rather than the list comprehension and the unique
call will save substantial compute time:
intersect_size = np.intersect1d(pred.serial_number.values,
p_n_tpr_df.serial_number.values).shape[0]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With