I would like to know what techniques I should look up-to for optimizing a given algorithm for a given architecture. How do I improve performance using better caching. How do I reduce cache coherency or what access patterns should I avoid in my algorithm/program so that cache coherency doesn't impact my performance?
I understand a few standard techniques for using the recently cached data in L1 but how would I use data in a shared cache(say L2) on a multi-core effectively thereby I avoid a main-memory access which is even more costlier?
Basically, I am interested in what data access patterns I should try to exploit or avoid for a better mapping to my given architecture. What data structure I could use, in what scenarios for what architectures(with different levels of private cache and shared cache) to improve performance. Thanks.
A multicore processor is an integrated circuit that has two or more processor cores attached for enhanced performance and reduced power consumption. These processors also enable more efficient simultaneous processing of multiple tasks, such as with parallel processing and multithreading.
The CPU handles all of the calculations a computer needs in order to function. Optimizing the speed at which the CPU runs increases performance and allows the computer to perform more CPU-heavy tasks. Optimizing the CPU is done through the Power Options section of the Control Panel in the Windows operating system.
What techniques I should look up-to for optimizing a given algorithm for a given architecture?
Micro-architectures vary, so learn the details of your specific processor. Intel provides good documentation in their optimization guide. If you are using an Intel processor you'll want to read sections 8.3 and 8.6:
8.3 OPTIMIZATION GUIDELINES This section summarizes optimization guidelines for tuning multithreaded applications. Five areas are listed (in order of importance):
Practices associated with each area are listed in this section. Guidelines for each area are discussed in greater depth in sections that follow. Most of the coding recommendations improve performance scaling with processor cores; and scaling due to HT Technology. Techniques that apply to only one environment are noted.
8.6 MEMORY OPTIMIZATION
Efficient operation of caches is a critical aspect of memory optimization. Efficient operation of caches needs to address the following:
What data access patterns I should try to exploit or avoid for a better mapping to my given architecture?
Exploit
When caches are full and an access misses in the cache the cache must evict something to make room for the new data/code, what is evicted is usually based on an approximation of least-recently used (LRU). If possible then your code should have strong locality of reference:
Avoid
Measure
As Andrei Alexandrescu said in this talk - when it comes to performance tuning the only intuition that is right is "I should measure this." Familiarize yourself with cache performance monitoring tools, for example:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With