I have a frame looks like:
2015-12-30 2015-12-31
300100 am 1 3
pm 3 2
300200 am 5 1
pm 4 5
300300 am 2 6
pm 3 7
and the other frame looks like
2016-1-1 2016-1-2 2016-1-3 2016-1-4
300100 am 1 3 5 1
pm 3 2 4 5
300200 am 2 5 2 6
pm 5 1 3 7
300300 am 1 6 3 2
pm 3 7 2 3
300400 am 3 1 1 3
pm 2 5 5 2
300500 am 1 6 6 1
pm 5 7 7 5
Now I want to merge the two frames, and the frame after merge to be looked like this:
2015-12-30 2015-12-31 2016-1-1 2016-1-2 2016-1-3 2016-1-4
300100 am 1 3 1 3 5 1
pm 3 2 3 2 4 5
300200 am 5 1 2 5 2 6
pm 4 5 5 1 3 7
300300 am 2 6 1 6 3 2
pm 3 7 3 7 2 3
300400 am 3 1 1 3
pm 2 5 5 2
300500 am 1 6 6 1
pm 5 7 7 5
I tried pd.merge(frame1,frame2,right_index=True,left_index=True), but what it returned was not the desired format. Can anyone help? Thanks!
You can use concat:
print (pd.concat([frame1, frame2], axis=1))
2015-12-30 2015-12-31 1.1.2016 2.1.2016 3.1.2016 4.1.2016
300100 am 1.0 3.0 1 3 5 1
pm 3.0 2.0 3 2 4 5
300200 am 5.0 1.0 2 5 2 6
pm 4.0 5.0 5 1 3 7
300300 am 2.0 6.0 1 6 3 2
pm 3.0 7.0 3 7 2 3
300400 am NaN NaN 3 1 1 3
pm NaN NaN 2 5 5 2
300500 am NaN NaN 1 6 6 1
pm NaN NaN 5 7 7 5
Values in first and second column are converted to float, because NaN values convert int to float - see docs.
One possible solution is replace NaN by some int e.g. 0 and then convert to int:
print (pd.concat([frame1, frame2], axis=1)
.fillna(0)
.astype(int))
2015-12-30 2015-12-31 1.1.2016 2.1.2016 3.1.2016 4.1.2016
300100 am 1 3 1 3 5 1
pm 3 2 3 2 4 5
300200 am 5 1 2 5 2 6
pm 4 5 5 1 3 7
300300 am 2 6 1 6 3 2
pm 3 7 3 7 2 3
300400 am 0 0 3 1 1 3
pm 0 0 2 5 5 2
300500 am 0 0 1 6 6 1
pm 0 0 5 7 7 5
you can use join
frame1.join(frame2, how='outer')

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With