I have a Spark DataFrame
df
with five columns. I want to add another column with its values being the tuple of the first and second columns. When using with withColumn() method, I get the mismatch error, because the input is not Column type, but instead (Column,Column). I wonder if there is a solution beside running for loop over the rows in this case?
var dfCol=(col1:Column,col2:Column)=>(col1,col2)
val vv = df.withColumn( "NewColumn", dfCol( df(df.schema.fieldNames(1)) , df(df.schema.fieldNames(2)) ) )
Using concat() Function to Concatenate DataFrame Columns Spark SQL functions provide concat() to concatenate two or more DataFrame columns into a single Column. It can also take columns of different Data Types and concatenate them into a single column. for example, it supports String, Int, Boolean and also arrays.
You can use struct
function which creates a tuple of provided columns:
import org.apache.spark.sql.functions.struct
val df = Seq((1,2), (3,4), (5,3)).toDF("a", "b")
df.withColumn("NewColumn", struct(df("a"), df("b")).show(false)
+---+---+---------+
|a |b |NewColumn|
+---+---+---------+
|1 |2 |[1,2] |
|3 |4 |[3,4] |
|5 |3 |[5,3] |
+---+---+---------+
You can merge multiple dataframe columns into one using array.
// $"*" will capture all existing columns
df.select($"*", array($"col1", $"col2").as("newCol"))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With