Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to merge multiple sequential models in Keras Python?

I'm building a model with multiple sequential models that I need to merge before training the dataset. It seems keras.engine.topology.Merge isn't supported on Keras 2.0 anymore. I tried keras.layers.Add and keras.layers.Concatenate and it doesn't work as well.

Here's my code:

model = Sequential()

model1 = Sequential()
model1.add(Embedding(len(word_index) + 1, 300, weights = [embedding_matrix], input_length = 40, trainable = False))
model1.add(TimeDistributed(Dense(300, activation = 'relu')))
model1.add(Lambda(lambda x: K.sum(x, axis = 1), output_shape = (300, )))

model2 = Sequential()
###Same as model1###

model3 = Sequential()
model3.add(Embedding(len(word_index) + 1, 300, weights = [embedding_matrix], input_length = 40, trainable = False))
model3.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'valid', activation = 'relu', subsample_length = 1))
model3.add(GlobalMaxPooling1D())
model3.add(Dropout(0.2))
model3.add(Dense(300))
model3.add(Dropout(0.2))
model3.add(BatchNormalization())

model4 = Sequential()
###Same as model3###

model5 = Sequential()
model5.add(Embedding(len(word_index) + 1, 300, input_length = 40, dropout = 0.2))
model5.add(LSTM(300, dropout_W = 0.2, dropout_U = 0.2))

model6 = Sequential()
###Same as model5###

merged_model = Sequential()
merged_model.add(Merge([model1, model2, model3, model4, model5, model6], mode = 'concat'))
merged_model.add(BatchNormalization())
merged_model.add(Dense(300))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(Dense(1))
merged_model.add(BatchNormalization())
merged_model.add(Activation('sigmoid'))
merged_model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
checkpoint = ModelCheckpoint('weights.h5', monitor = 'val_acc', save_best_only = True, verbose = 2)
merged_model.fit([x1, x2, x1, x2, x1, x2], y = y, batch_size = 384, nb_epoch = 200, verbose = 1, validation_split = 0.1, shuffle = True, callbacks = [checkpoint])

Error:

name 'Merge' is not defined

Using keras.layers.Add and keras.layers.Concatenate says cannot do it with sequential models.

What's the workaround for it?

like image 831
K. K. Avatar asked Sep 08 '18 06:09

K. K.


People also ask

How do you combine two deep learning models?

The most common method to combine models is by averaging multiple models, where taking a weighted average improves the accuracy. Bagging, boosting, and concatenation are other methods used to combine deep learning models. Stacked ensemble learning uses different combining techniques to build a model.


1 Answers

If I were you, I would use Keras functional API in this case, at least for making the final model (i.e. merged_model). It gives you much more flexibility and let you easily define complex models:

from keras.models import Model
from keras.layers import concatenate

merged_layers = concatenate([model1.output, model2.output, model3.output,
                             model4.output, model5.output, model6.output])
x = BatchNormalization()(merged_layers)
x = Dense(300)(x)
x = PReLU()(x)
x = Dropout(0.2)(x)
x = Dense(1)(x)
x = BatchNormalization()(x)
out = Activation('sigmoid')(x)
merged_model = Model([model1.input, model2.input, model3.input,
                      model4.input, model5.input, model6.input], [out])
merged_model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])

You can also do the same thing for other models you have defined. As I mentioned, functional API gives you more control over the structure of the model, so it is recommended to be used in case of creating complex models like this.

like image 175
today Avatar answered Sep 22 '22 02:09

today