Consider a recursive function, say the Euclid algorithm defined by:
let rec gcd a b =
let (q, r) = (a / b, a mod b) in
if r = 0 then b else gcd b r
(This is a simplified, very brittle definition.) How to memoize such a function? The classical approach of defining a high-order function memoize : ('a -> 'b) -> ('a -> 'b)
adding memoization to the function is here useless, because it will only save time on the first call.
I have found details on how to memoize such function in Lisp or Haskell:
These suggestions rely on the ability found in Lisp to overwrite the symbol definition of a function or on the “call-by-need” strategy used by Haskell, and are therefore useless in OCaml.
The right way to do memoization in C++ is to mix the Y-combinator in. Your base function needs a modification. Instead of calling itself directly, it takes a templateized reference to itself as its first argument (or, a std::function<Same_Signature> recursion as its first argument). We start with a Y-combinator.
If recursive calls with the same arguments are repeatedly made, then the inefficient recursive algorithm can be memoized by saving these subproblem solutions in a table so they do not have to be recomputed.
Bottom-up. Sometimes the best way to improve the efficiency of a recursive algorithm is to not use recursion at all. In the case of generating Fibonacci numbers, an iterative technique called the bottom-up approach can save us both time and space.
The short answer is: Yes.
# let memoize f =
let table = Hashtbl.Poly.create () in
(fun x ->
match Hashtbl.find table x with
| Some y -> y
| None ->
let y = f x in
Hashtbl.add_exn table ~key:x ~data:y;
y
);;
val memoize : ('a -> 'b) -> 'a -> 'b = <fun>
# let memo_rec f_norec x =
let fref = ref (fun _ -> assert false) in
let f = memoize (fun x -> f_norec !fref x) in
fref := f;
f x
;;
val memo_rec : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>
You should read the section here: https://realworldocaml.org/v1/en/html/imperative-programming-1.html#memoization-and-dynamic-programming in the book Real World OCaml.
It will help you truly understand how memo
is working.
The winning strategy is to define the recursive function to be memoized in a continuation passing style:
let gcd_cont k (a,b) =
let (q, r) = (a / b, a mod b) in
if r = 0 then b else k (b,r)
Instead of defining recursively the gcd_cont
function, we add an argument, the “continuation” to be called in lieu of recursing. Now we define two higher-order functions, call
and memo
which operate on functions having a continuation argument. The first function, call
is defined as:
let call f =
let rec g x =
f g x
in
g
It builds a function g
which does nothing special but calls f
. The second function memo
builds a function g
implementing memoization:
let memo f =
let table = ref [] in
let compute k x =
let y = f k x in
table := (x,y) :: !table; y
in
let rec g x =
try List.assoc x !table
with Not_found -> compute g x
in
g
These functions have the following signatures.
val call : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>
val memo : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>
Now we define two versions of the gcd
function, the first one without memoization and the second one with memoization:
let gcd_call a b =
call gcd_cont (a,b)
let gcd_memo a b =
memo gcd_cont (a,b)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With