I'm working in Coq and trying to figure out how to do the next thing: If I have a list of natural numbers and a given number n
, I want to break my list in what goes before and after each of the n
's. To make it clearer, if I have the list [1; 2; 0; 3; 4; 0; 9]
and the number n = 0
, then I want to have as output the three lists: [1;2]
, [3;4]
and [9]
. The main problem I have is that I don't know how to output several elements on a Fixpoint
. I think I need to nest Fixpoint
s but I just don't see how. As a very raw idea with one too many issues I have:
Fixpoint SubLists (A : list nat)(m : nat) :=
match A with
|[] => []
|n::A0 => if n =? m then (SubLists L) else n :: (SubLists L)
end.
I would very much appreciate your input on how to do this, and how to navigate having an output of several elements.
You can do this by combining a few fixpoints:
Require Import Coq.Arith.Arith.
Require Import Coq.Lists.List.
Import ListNotations.
Fixpoint prefix n l :=
match l with
| [] => []
| m :: l' => if beq_nat n m then []
else m :: prefix n l'
end.
Fixpoint suffix n l :=
match l with
| [] => l
| m :: l' => if beq_nat n m then l'
else suffix n l'
end.
Fixpoint split_at n l :=
match l with
| [] => []
| m :: l' => prefix n (m :: l') :: split_at n (suffix n (m :: l'))
end.
Notice that Coq's termination checker accepts the recursive call to split_at
, even though it is not done syntactically a subterm of l
. The reason for that is that it is able to detect that suffix only outputs subterms of its argument. But in order for this to work, we must return l
, and not []
on its first branch (try changing it to see what happens!).
In addition to Arthur's solution, you can use an accumulator, which is typical of Functional Programming style:
Require Import Coq.Arith.Arith.
Require Import Coq.Lists.List.
Import ListNotations.
Definition add_acc m (s : list (list nat)) :=
match s with
| [] => [[m]]
| s :: ss => (m :: s) :: ss
end.
Fixpoint split_seq n l acc :=
match l with
| [] => map (@rev _) (rev acc)
| m :: l' => if beq_nat n m then
split_seq n l' ([] :: acc)
else
split_seq n l' (add_acc m acc)
end.
Compute (split_seq 0 [1; 2; 0; 3; 4; 0; 9] []).
Note that the result is reversed so you need to use rev
. A bonus exercise is to improve this.
EDIT: Provided second variant that doesn't add []
for repeated separators.
Definition reset_acc (s : list (list nat)) :=
match s with
| [] :: ss => [] :: ss
| ss => [] :: ss
end.
Fixpoint split_seq_nodup n l acc :=
match l with
| [] => map (@rev _) (rev acc)
| m :: l' => if beq_nat n m then
split_seq_nodup n l' (reset_acc acc)
else
split_seq_nodup n l' (add_acc m acc)
end.
Compute (split_seq_nodup 0 [1; 2; 0; 3; 4; 0; 9] []).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With