I am looking for a way to create four-dimensional plots (surface plus a color scale) using Python and matplotlib. I am able to generate the surface using the first three variables, but I am not having success adding the color scale for the fourth variable. Here is a small subset of my data below. Any help would be greatly appreciated. Thanks
Data Subset
var1 var2 var3 var4
10.39 73.32 2.02 28.26
11.13 68.71 1.86 27.83
12.71 74.27 1.89 28.26
11.46 91.06 1.63 28.26
11.72 85.38 1.51 28.26
13.39 78.68 1.89 28.26
13.02 68.02 2.01 28.26
12.08 64.37 2.18 28.26
11.58 60.71 2.28 28.26
8.94 65.67 1.92 27.04
11.61 59.57 2.32 27.52
19.06 74.49 1.69 63.35
17.52 73.62 1.73 63.51
19.52 71.52 1.79 63.51
18.76 67.55 1.86 63.51
19.84 53.34 2.3 63.51
20.19 59.82 1.97 63.51
17.43 57.89 2.05 63.38
17.9 59.95 1.89 63.51
18.97 57.84 2 63.51
19.22 57.74 2.05 63.51
17.55 55.66 1.99 63.51
19.22 101.31 6.76 94.29
19.41 99.47 6.07 94.15
18.99 94.01 7.32 94.08
19.88 103.57 6.98 94.58
19.08 95.38 5.66 94.14
20.36 100.43 6.13 94.47
20.13 98.78 7.37 94.47
20.36 89.36 8.79 94.71
20.96 84.48 8.33 94.01
21.02 83.97 6.78 94.72
19.6 95.64 6.56 94.57
In order to plot 3D figures use matplotlib, we need to import the mplot3d toolkit, which adds the simple 3D plotting capabilities to matplotlib. Once we imported the mplot3d toolkit, we could create 3D axes and add data to the axes. Let's first create a 3D axes.
Visualize 4-D Data with Multiple Plots You can use the plotmatrix function to create an n by n matrix of plots to see the pair-wise relationships between the variables. The plotmatrix function returns two outputs. The first output is a matrix of the line objects used in the scatter plots.
To create the plot you want, we need to use matplotlib's plot_surface
to plot Z
vs (X,Y)
surface, and then use the keyword argument facecolors
to pass in a new color for each patch.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
# create some fake data
x = y = np.arange(-4.0, 4.0, 0.02)
# here are the x,y and respective z values
X, Y = np.meshgrid(x, y)
Z = np.sinc(np.sqrt(X*X+Y*Y))
# this is the value to use for the color
V = np.sin(Y)
# create the figure, add a 3d axis, set the viewing angle
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.view_init(45,60)
# here we create the surface plot, but pass V through a colormap
# to create a different color for each patch
ax.plot_surface(X, Y, Z, facecolors=cm.Oranges(V))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With