I've followed this tutorial (colab notebook) in order to finetune my model.
model = AutoModelForCausalLM.from_pretrained("finetuned_model")
yields Killed.
yields
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "lucas0/empath-llama-7b"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(cwd+"/tokenizer.model")
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
yields
AttributeError: /home/ubuntu/empath/lora/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats
full stacktrace
I have finetuned a model using PEFT and LoRa:
model = AutoModelForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
torch_dtype=torch.float16,
device_map='auto',
)
I had to download and manually specify the llama tokenizer.
tokenizer = LlamaTokenizer(cwd+"/tokenizer.model")
tokenizer.pad_token = tokenizer.eos_token
to the training:
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
data = pd.read_csv("my_csv.csv")
dataset = Dataset.from_pandas(data)
tokenized_dataset = dataset.map(lambda samples: tokenizer(samples["text"]))
trainer = transformers.Trainer(
model=model,
train_dataset=tokenized_dataset,
args=transformers.TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=100,
max_steps=100,
learning_rate=1e-3,
fp16=True,
logging_steps=1,
output_dir='outputs',
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = True # silence the warnings. Please re-enable for inference!
trainer.train()
and saved it locally with:
trainer.save_model(cwd+"/finetuned_model")
print("saved trainer locally")
as well as to the hub:
model.push_to_hub("lucas0/empath-llama-7b", create_pr=1)
How can I load my finetuned model?
To load a fine-tuned peft/lora model, take a look at the guanco example, https://stackoverflow.com/a/76372390/610569
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
model_name = "decapoda-research/llama-7b-hf"
adapters_name = "lucas0/empath-llama-7b"
print(f"Starting to load the model {model_name} into memory")
m = AutoModelForCausalLM.from_pretrained(
model_name,
#load_in_4bit=True,
torch_dtype=torch.bfloat16,
device_map={"": 0}
)
m = PeftModel.from_pretrained(m, adapters_name)
m = m.merge_and_unload()
tok = LlamaTokenizer.from_pretrained(model_name)
tok.bos_token_id = 1
stop_token_ids = [0]
print(f"Successfully loaded the model {model_name} into memory")
You will need an A10g GPU runtime minimally to load the model properly.
For more details see
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With