I'd like to transform dictionary into dataframe.
dic={'a': [5, 9],
'b': [4, 61],
'c': [24, 9]}
If you do:
df=pd.DataFrame(dic).transpose()
You'll have:
0 1
a 5 9
b 4 61
c 24 9
But I'd like to keep the dictionary key as the first column,how could I do?
name F0 F1
a 5 9
b 4 61
c 24 9
I think simpliest is reset_index:
df=pd.DataFrame(dic, index=['F0','F1']).rename_axis('name', axis=1).transpose().reset_index()
print (df)
name F0 F1
0 a 5 9
1 b 4 61
2 c 24 9
And also:
df=pd.DataFrame.from_dict(dic, orient='index').reset_index()
df.columns = ['name','F0','F1']
print (df)
name F0 F1
0 b 4 61
1 c 24 9
2 a 5 9
Another a bit hack - add value from key to values in dict comprehension, but also reset_index is necessary for default monotonic index (0,1,2..):
dic = {k:[k]+v for k,v in dic.items()}
print (dic)
{'b': ['b', 4, 61], 'c': ['c', 24, 9], 'a': ['a', 5, 9]}
df=pd.DataFrame(dic, index=['name','F0','F1']).transpose().reset_index(drop=True)
print (df)
name F0 F1
0 a 5 9
1 b 4 61
2 c 24 9
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With