I saw following question and tried to find an answer for that.
Question: Given a sequence of positive integers A and an integer T, return whether there is a *continuous sequence* of A that sums up to exactly T
Example
[23, 5, 4, 7, 2, 11], 20. Return True because 7 + 2 + 11 = 20
[1, 3, 5, 23, 2], 8. Return True because 3 + 5 = 8
[1, 3, 5, 23, 2], 7 Return False because no sequence in this array adds up to 7
Note: We are looking for an O(N) solution. There is an obvious O(N^2) solution which is a good starting point but is not the final solution we are looking for.
My answer to above question is:
public class Tester {
public static void main(String[] args) {
int[] myArray = {23, 5, 4, 7, 2, 11};
System.out.println(isValid(myArray, 20));
}
public static boolean isValid(int[] array, int sum) {
int pointer = 0;
int temp = 0;
while (pointer < array.length)
{
for (int i = pointer; i < array.length; i++)
{
if (array[i] > sum)
break;
temp += array[i];
if (temp == sum)
return true;
else if (temp > sum)
break;
// otherwise continue
}
temp = 0;
pointer++;
}
return false;
}
}
I think my answer is O(N^2) which is not acceptable based on Question. Is there a solution based on O(N)?
You only need to loop once actually which is O(N).
Start adding from index 0 and once you exceed the sum
start removing from the beginning of the array. if temp
falls below sum
continue looping.
public static boolean isValid(int[] array, int sum) {
int init = 0,temp = 0;
for (int i = 0; i < array.length; i++) {
temp += array[i];
while (temp > sum) {
temp -= array[init];
init++;
}
if (temp == sum)
return true;
}
return false;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With