I have 2 columns in dataframe
1)work experience (years)
2)company_type
I want to impute company_type column based on work experience column. company_type column has NaN values which I want to fill based on work experience column. Work experience column does not have any missing values.
Here work_exp is numerical data and company_type is categorical data.
Example data:
Work_exp company_type
10 PvtLtd
0.5 startup
6 Public Sector
8 NaN
1 startup
9 PvtLtd
4 NaN
3 Public Sector
2 startup
0 NaN
I have decided the threshold for imputing NaN values.
Startup if work_exp < 2yrs
Public sector if work_exp > 2yrs and <8yrs
PvtLtd if work_exp >8yrs
Based on above threshold criteria how can I impute missing categorical values in column company_type.
You can use numpy.select
with numpy.where
:
# define conditions and values
conditions = [df['Work_exp'] < 2, df['Work_exp'].between(2, 8), df['Work_exp'] > 8]
values = ['Startup', 'PublicSector', 'PvtLtd']
# apply logic where company_type is null
df['company_type'] = np.where(df['company_type'].isnull(),
np.select(conditions, values),
df['company_type'])
print(df)
Work_exp company_type
0 10.0 PvtLtd
1 0.5 startup
2 6.0 PublicSector
3 8.0 PublicSector
4 1.0 startup
5 9.0 PvtLtd
6 4.0 PublicSector
7 3.0 PublicSector
8 2.0 startup
9 0.0 Startup
pd.Series.between
includes start and end values by default, and permits comparison between float
values. Use inclusive=False
argument to omit boundaries.
s = pd.Series([2, 2.5, 4, 4.5, 5])
s.between(2, 4.5)
0 True
1 True
2 True
3 True
4 False
dtype: bool
great answer by @jpp. Just want to add a different approach here using pandas.cut()
.
df['company_type'] = pd.cut(
df.Work_exp,
bins=[0,2,8,100],
right=False,
labels=['Startup', 'Public', 'Private']
)
Work_exp company_type
0 10.0 Private
1 0.5 Startup
2 6.0 Public
3 8.0 Private
4 1.0 Startup
5 9.0 Private
6 4.0 Public
7 3.0 Public
8 2.0 Public
9 0.0 Startup
Also based on your conditions, Index 8 should be public ?
Startup < 2
PublicSector >=2 and < 8
PvtLtd >= 8
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With