Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to implement Grad-CAM on a trained network

I have already trained a network and I have saved it in the form of mynetwork.model. I want to apply gradcam using my own model and not VGG16 or ResNet etc.

apply_gradcam.py

# import the necessary packages
from Grad_CAM.gradcam import GradCAM
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.applications import imagenet_utils
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import imutils
import cv2


# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
    help="path to the input image")
ap.add_argument("-m", "--model", type=str, default="vgg",
    #choices=("vgg", "resnet"),
    help="model to be used")
args = vars(ap.parse_args())


# initialize the model to be VGG16
Model = VGG16
# check to see if we are using ResNet
if args["model"] == "resnet":
    Model = ResNet50
# load the pre-trained CNN from disk
print("[INFO] loading model...")
model = Model(weights="imagenet")

# load the original image from disk (in OpenCV format) and then
# resize the image to its target dimensions
orig = cv2.imread(args["image"])
resized = cv2.resize(orig, (224, 224))
# load the input image from disk (in Keras/TensorFlow format) and
# preprocess it
image = load_img(args["image"], target_size=(224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = imagenet_utils.preprocess_input(image)

# use the network to make predictions on the input image and find
# the class label index with the largest corresponding probability
preds = model.predict(image)
i = np.argmax(preds[0])
# decode the ImageNet predictions to obtain the human-readable label
decoded = imagenet_utils.decode_predictions(preds)
(imagenetID, label, prob) = decoded[0][0]
label = "{}: {:.2f}%".format(label, prob * 100)
print("[INFO] {}".format(label))

# initialize our gradient class activation map and build the heatmap
cam = GradCAM(model, i)
heatmap = cam.compute_heatmap(image)
# resize the resulting heatmap to the original input image dimensions
# and then overlay heatmap on top of the image
heatmap = cv2.resize(heatmap, (orig.shape[1], orig.shape[0]))
(heatmap, output) = cam.overlay_heatmap(heatmap, orig, alpha=0.5)

cv2.rectangle(output, (0, 0), (340, 40), (0, 0, 0), -1)
cv2.putText(output, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,
    0.8, (255, 255, 255), 2)
# display the original image and resulting heatmap and output image
# to our screen
output = np.vstack([orig, heatmap, output])
output = imutils.resize(output, height=700)
cv2.imshow("Output", output)
cv2.waitKey(0)

gradcam.py

from tensorflow.keras.models import Model
import tensorflow as tf
import numpy as np
import cv2


class GradCAM:
    def __init__(self, model, classIdx, layerName=None):
        # store the model, the class index used to measure the class
        # activation map, and the layer to be used when visualizing
        # the class activation map
        self.model = model
        self.classIdx = classIdx
        self.layerName = layerName
        # if the layer name is None, attempt to automatically find
        # the target output layer
        if self.layerName is None:
            self.layerName = self.find_target_layer()


    def find_target_layer(self):
        # attempt to find the final convolutional layer in the network
        # by looping over the layers of the network in reverse order
        for layer in reversed(self.model.layers):
            # check to see if the layer has a 4D output
            if len(layer.output_shape) == 4:
                return layer.name
        # otherwise, we could not find a 4D layer so the GradCAM
        # algorithm cannot be applied
        raise ValueError("Could not find 4D layer. Cannot apply GradCAM.")


    def compute_heatmap(self, image, eps=1e-8):
        # construct our gradient model by supplying (1) the inputs
        # to our pre-trained model, (2) the output of the (presumably)
        # final 4D layer in the network, and (3) the output of the
        # softmax activations from the model
        gradModel = Model(
            inputs=[self.model.inputs],
            outputs=[self.model.get_layer(self.layerName).output,
                     self.model.output])

        # record operations for automatic differentiation
        with tf.GradientTape() as tape:
            # cast the image tensor to a float-32 data type, pass the
            # image through the gradient model, and grab the loss
            # associated with the specific class index
            inputs = tf.cast(image, tf.float32)
            (convOutputs, predictions) = gradModel(inputs)
            loss = predictions[:, self.classIdx]
        # use automatic differentiation to compute the gradients
        grads = tape.gradient(loss, convOutputs)

        # compute the guided gradients
        castConvOutputs = tf.cast(convOutputs > 0, "float32")
        castGrads = tf.cast(grads > 0, "float32")
        guidedGrads = castConvOutputs * castGrads * grads
        # the convolution and guided gradients have a batch dimension
        # (which we don't need) so let's grab the volume itself and
        # discard the batch
        convOutputs = convOutputs[0]
        guidedGrads = guidedGrads[0]

        # compute the average of the gradient values, and using them
        # as weights, compute the ponderation of the filters with
        # respect to the weights
        weights = tf.reduce_mean(guidedGrads, axis=(0, 1))
        cam = tf.reduce_sum(tf.multiply(weights, convOutputs), axis=-1)

        # grab the spatial dimensions of the input image and resize
        # the output class activation map to match the input image
        # dimensions
        (w, h) = (image.shape[2], image.shape[1])
        heatmap = cv2.resize(cam.numpy(), (w, h))
        # normalize the heatmap such that all values lie in the range
        # [0, 1], scale the resulting values to the range [0, 255],
        # and then convert to an unsigned 8-bit integer
        numer = heatmap - np.min(heatmap)
        denom = (heatmap.max() - heatmap.min()) + eps
        heatmap = numer / denom
        heatmap = (heatmap * 255).astype("uint8")
        # return the resulting heatmap to the calling function
        return heatmap

    def overlay_heatmap(self, heatmap, image, alpha=0.5,
                        colormap=cv2.COLORMAP_VIRIDIS):
        # apply the supplied color map to the heatmap and then
        # overlay the heatmap on the input image
        heatmap = cv2.applyColorMap(heatmap, colormap)
        output = cv2.addWeighted(image, alpha, heatmap, 1 - alpha, 0)
        # return a 2-tuple of the color mapped heatmap and the output,
        # overlaid image
        return (heatmap, output)

As you can see in apply_gradcam.py, the VGG16 or ResNet pretrained models are used. I want to perform gradcam by using my own trained model. For this reason I commented these lines:

   # initialize the model to be VGG16
    Model = VGG16
    # check to see if we are using ResNet
    if args["model"] == "resnet":
        Model = ResNet50
    # load the pre-trained CNN from disk
    print("[INFO] loading model...")
    model = Model(weights="imagenet")

and I used

model = load_model(args["model"]) 

in order to use my own model. Then I executed:

 python apply_gradcam.py --image /home/antonis/IM0001.jpeg --model /home/antonis/mynetwork.model

However, I get the following error:

ValueError: `decode_predictions` expects a batch of predictions (i.e.
a 2D array of shape (samples, 1000)). Found array with shape: (1, 3)

which is expected as the model outputs the ImageNet classes (1000-dimensional) while my model returns predictions over 2 classes.

I wonder how to fix this and apply gradcam using my own model.

like image 475
e7lT2P Avatar asked Feb 13 '21 07:02

e7lT2P


People also ask

What is the difference between Cam and grad-Cam?

In CAM, we weight these feature maps using weights taken out of the last fully-connected layer of the network. In Grad-CAM, we weight the feature maps using “alpha values” that are calculated based on gradients.

How does grad-cam work?

The Grad-CAM technique utilizes the gradients of the classification score with respect to the final convolutional feature map, to identify the parts of an input image that most impact the classification score. The places where this gradient is large are exactly the places where the final score depends most on the data.

What is gradient-weighted class activation mapping?

Gradient-weighted Class Activation Mapping (Grad-CAM) is a class-discriminative localization technique for making any convolutional neural network model more transparent by producing visual explanations (Selvaraju et. al., 2017).


1 Answers

One thing I don't get is if you've your own classifier (2) why then use imagenet_utils.decode_predictions? I'm not sure if my following answer will satisfy you or not. But here are some pointer.

DataSet

import tensorflow as tf
import numpy as np 

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()

# train set / data 
x_train = x_train.astype('float32') / 255
# train set / target 
y_train = tf.keras.utils.to_categorical(y_train , num_classes=10)

# validation set / data 
x_test = x_test.astype('float32') / 255
# validation set / target 
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)  
# (50000, 32, 32, 3) (50000, 10)
# (10000, 32, 32, 3) (10000, 10

Model

input = tf.keras.Input(shape=(32,32,3))
efnet = tf.keras.applications.EfficientNetB0(weights='imagenet',
                                             include_top = False, 
                                             input_tensor = input)
# Now that we apply global max pooling.
gap = tf.keras.layers.GlobalMaxPooling2D()(efnet.output)

# Finally, we add a classification layer.
output = tf.keras.layers.Dense(10, activation='softmax')(gap)

# bind all
func_model = tf.keras.Model(efnet.input, output)

Compile and Run

func_model.compile(
          loss      = tf.keras.losses.CategoricalCrossentropy(),
          metrics   = tf.keras.metrics.CategoricalAccuracy(),
          optimizer = tf.keras.optimizers.Adam())
# fit 
func_model.fit(x_train, y_train, batch_size=128, epochs=15, verbose = 2)

Epoch 14/15
391/391 - 13s - loss: 0.1479 - categorical_accuracy: 0.9491
Epoch 15/15
391/391 - 13s - loss: 0.1505 - categorical_accuracy: 0.9481

Grad CAM

Same as your set up.

from tensorflow.keras.models import Model
import tensorflow as tf
import numpy as np
import cv2

class GradCAM:
    def __init__(self, model, classIdx, layerName=None):
        # store the model, the class index used to measure the class
        # activation map, and the layer to be used when visualizing
        # the class activation map
        self.model = model
        self.classIdx = classIdx
        self.layerName = layerName
        # if the layer name is None, attempt to automatically find
        # the target output layer
        if self.layerName is None:
            self.layerName = self.find_target_layer()

    def find_target_layer(self):
        # attempt to find the final convolutional layer in the network
        # by looping over the layers of the network in reverse order
        for layer in reversed(self.model.layers):
            # check to see if the layer has a 4D output
            if len(layer.output_shape) == 4:
                return layer.name
        # otherwise, we could not find a 4D layer so the GradCAM
        # algorithm cannot be applied
        raise ValueError("Could not find 4D layer. Cannot apply GradCAM.")


    def compute_heatmap(self, image, eps=1e-8):
        # construct our gradient model by supplying (1) the inputs
        # to our pre-trained model, (2) the output of the (presumably)
        # final 4D layer in the network, and (3) the output of the
        # softmax activations from the model
        gradModel = Model(
            inputs=[self.model.inputs],
            outputs=[self.model.get_layer(self.layerName).output, self.model.output])

        # record operations for automatic differentiation
        with tf.GradientTape() as tape:
            # cast the image tensor to a float-32 data type, pass the
            # image through the gradient model, and grab the loss
            # associated with the specific class index
            inputs = tf.cast(image, tf.float32)
            (convOutputs, predictions) = gradModel(inputs)
            
            loss = predictions[:, tf.argmax(predictions[0])]
    
        # use automatic differentiation to compute the gradients
        grads = tape.gradient(loss, convOutputs)

        # compute the guided gradients
        castConvOutputs = tf.cast(convOutputs > 0, "float32")
        castGrads = tf.cast(grads > 0, "float32")
        guidedGrads = castConvOutputs * castGrads * grads
        # the convolution and guided gradients have a batch dimension
        # (which we don't need) so let's grab the volume itself and
        # discard the batch
        convOutputs = convOutputs[0]
        guidedGrads = guidedGrads[0]

        # compute the average of the gradient values, and using them
        # as weights, compute the ponderation of the filters with
        # respect to the weights
        weights = tf.reduce_mean(guidedGrads, axis=(0, 1))
        cam = tf.reduce_sum(tf.multiply(weights, convOutputs), axis=-1)

        # grab the spatial dimensions of the input image and resize
        # the output class activation map to match the input image
        # dimensions
        (w, h) = (image.shape[2], image.shape[1])
        heatmap = cv2.resize(cam.numpy(), (w, h))
        # normalize the heatmap such that all values lie in the range
        # [0, 1], scale the resulting values to the range [0, 255],
        # and then convert to an unsigned 8-bit integer
        numer = heatmap - np.min(heatmap)
        denom = (heatmap.max() - heatmap.min()) + eps
        heatmap = numer / denom
        heatmap = (heatmap * 255).astype("uint8")
        # return the resulting heatmap to the calling function
        return heatmap

    def overlay_heatmap(self, heatmap, image, alpha=0.5,
                        colormap=cv2.COLORMAP_VIRIDIS):
        # apply the supplied color map to the heatmap and then
        # overlay the heatmap on the input image
        heatmap = cv2.applyColorMap(heatmap, colormap)
        output = cv2.addWeighted(image, alpha, heatmap, 1 - alpha, 0)
        # return a 2-tuple of the color mapped heatmap and the output,
        # overlaid image
        return (heatmap, output)

Prediction

image = cv2.imread('/content/dog.jpg')
image = cv2.resize(image, (32, 32))
image = image.astype('float32') / 255
image = np.expand_dims(image, axis=0)

preds = func_model.predict(image) 
i = np.argmax(preds[0])

To get the layer's name of the model

for idx in range(len(func_model.layers)):
  print(func_model.get_layer(index = idx).name)

# we picked `block5c_project_con` layer 

Passing to GradCAM class

icam = GradCAM(func_model, i, 'block5c_project_conv') 
heatmap = icam.compute_heatmap(image)
heatmap = cv2.resize(heatmap, (32, 32))

image = cv2.imread('/content/dog.jpg')
image = cv2.resize(image, (32, 32))
print(heatmap.shape, image.shape)

(heatmap, output) = icam.overlay_heatmap(heatmap, image, alpha=0.5)

Visualization

fig, ax = plt.subplots(1, 3)

ax[0].imshow(heatmap)
ax[1].imshow(image)
ax[2].imshow(output)

enter image description here

Ref. Grad-CAM class activation visualization

like image 86
M.Innat Avatar answered Sep 22 '22 14:09

M.Innat