I'm trying to perform an operation on my data where a certain value will be mapped to a list of pre-determined values if it matches one of the criteria, or to a fall-through value otherwise.
This would be the equivalent SQL:
CASE
WHEN user_agent LIKE \'%CanvasAPI%\' THEN \'api\'
WHEN user_agent LIKE \'%candroid%\' THEN \'mobile_app_android\'
WHEN user_agent LIKE \'%iCanvas%\' THEN \'mobile_app_ios\'
WHEN user_agent LIKE \'%CanvasKit%\' THEN \'mobile_app_ios\'
WHEN user_agent LIKE \'%Windows NT%\' THEN \'desktop\'
WHEN user_agent LIKE \'%MacBook%\' THEN \'desktop\'
WHEN user_agent LIKE \'%iPhone%\' THEN \'mobile\'
WHEN user_agent LIKE \'%iPod Touch%\' THEN \'mobile\'
WHEN user_agent LIKE \'%iPad%\' THEN \'mobile\'
WHEN user_agent LIKE \'%iOS%\' THEN \'mobile\'
WHEN user_agent LIKE \'%CrOS%\' THEN \'desktop\'
WHEN user_agent LIKE \'%Android%\' THEN \'mobile\'
WHEN user_agent LIKE \'%Linux%\' THEN \'desktop\'
WHEN user_agent LIKE \'%Mac OS%\' THEN \'desktop\'
WHEN user_agent LIKE \'%Macintosh%\' THEN \'desktop\'
ELSE \'other_unknown\'
END AS user_agent_type
I am fairly new to Spark, and so my first attempt at this program uses a lookup dictionary and adjusts the values line by line in an RDD
like so:
USER_AGENT_VALS = {
'CanvasAPI': 'api',
'candroid': 'mobile_app_android',
'iCanvas': 'mobile_app_ios',
'CanvasKit': 'mobile_app_ios',
'Windows NT': 'desktop',
'MacBook': 'desktop',
'iPhone': 'mobile',
'iPod Touch': 'mobile',
'iPad': 'mobile',
'iOS': 'mobile',
'CrOS': 'desktop',
'Android': 'mobile',
'Linux': 'desktop',
'Mac OS': 'desktop',
'Macintosh': 'desktop'
}
def parse_requests(line: list,
id_data: dict,
user_vals: dict = USER_AGENT_VALS):
"""
Expects an input list which maps to the following indexes:
0: user_id
1: context(course)_id
2: request_month
3: user_agent_type
:param line: A list of values.
:return: A list
"""
found = False
for key, value in user_vals.items():
if key in line[3]:
found = True
line[3] = value
if not found:
line[3] = 'other_unknown'
# Retrieves the session_id count from the id_data dictionary using
# the user_id as the key.
session_count = id_data[str(line[0])]
line.append(session_count)
line.extend(config3.ETL_LIST)
return [str(item) for item in line]
My current code has the data in a dataframe
, and I'm not exactly sure how to perform the above operation most efficiently. I know they are immutable so it needs to be returned as a new dataframe, but my question is how best to do this. Here is my code:
from boto3 import client
import psycopg2 as ppg2
from pyspark import SparkConf, SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.functions import current_date, date_format, lit, StringType
EMR_CLIENT = client('emr')
conf = SparkConf().setAppName('Canvas Requests Logs')
sc = SparkContext(conf=conf)
sql_context = SQLContext(sc)
# for dependencies
# sc.addPyFile()
USER_AGENT_VALS = {
'CanvasAPI': 'api',
'candroid': 'mobile_app_android',
'iCanvas': 'mobile_app_ios',
'CanvasKit': 'mobile_app_ios',
'Windows NT': 'desktop',
'MacBook': 'desktop',
'iPhone': 'mobile',
'iPod Touch': 'mobile',
'iPad': 'mobile',
'iOS': 'mobile',
'CrOS': 'desktop',
'Android': 'mobile',
'Linux': 'desktop',
'Mac OS': 'desktop',
'Macintosh': 'desktop'
}
if __name__ == '__main__':
df = sql_context.read.parquet(
r'/Users/mharris/PycharmProjects/etl3/pyspark/Datasets/'
r'usage_data.gz.parquet')
course_data = df.filter(df['context_type'] == 'Course')
request_data = df.select(
df['user_id'],
df['context_id'].alias('course_id'),
date_format(df['request_timestamp'], 'MM').alias('request_month'),
df['user_agent']
)
sesh_id_data = df.groupBy('user_id').count()
joined_data = request_data.join(
sesh_id_data,
on=request_data['user_id'] == sesh_id_data['user_id']
).drop(sesh_id_data['user_id'])
all_fields = joined_data.withColumn(
'etl_requests_usage', lit('DEV')
).withColumn(
'etl_datetime_local', current_date()
).withColumn(
'etl_transformation_name', lit('agg_canvas_logs_user_agent_types')
).withColumn(
'etl_pdi_version', lit(r'Apache Spark')
).withColumn(
'etl_pdi_build_version', lit(r'1.6.1')
).withColumn(
'etl_pdi_hostname', lit(r'N/A')
).withColumn(
'etl_pdi_ipaddress', lit(r'N/A')
).withColumn(
'etl_checksum_md5', lit(r'N/A')
)
As a PS, is there a better way to add columns than the way I've done it?
If you want you can even use your SQL
expression directly:
expr = """
CASE
WHEN user_agent LIKE \'%Android%\' THEN \'mobile\'
WHEN user_agent LIKE \'%Linux%\' THEN \'desktop\'
ELSE \'other_unknown\'
END AS user_agent_type"""
df = sc.parallelize([
(1, "Android"), (2, "Linux"), (3, "Foo")
]).toDF(["id", "user_agent"])
df.selectExpr("*", expr).show()
## +---+----------+---------------+
## | id|user_agent|user_agent_type|
## +---+----------+---------------+
## | 1| Android| mobile|
## | 2| Linux| desktop|
## | 3| Foo| other_unknown|
## +---+----------+---------------+
otherwise you can replace it with a combination of when
and like
and otherwise
:
from pyspark.sql.functions import col, when
from functools import reduce
c = col("user_agent")
vs = [("Android", "mobile"), ("Linux", "desktop")]
expr = reduce(
lambda acc, kv: when(c.like(kv[0]), kv[1]).otherwise(acc),
vs,
"other_unknown"
).alias("user_agent_type")
df.select("*", expr).show()
## +---+----------+---------------+
## | id|user_agent|user_agent_type|
## +---+----------+---------------+
## | 1| Android| mobile|
## | 2| Linux| desktop|
## | 3| Foo| other_unknown|
## +---+----------+---------------+
You can also add multiple columns in a single select
:
exprs = [c.alias(a) for (a, c) in [
('etl_requests_usage', lit('DEV')),
('etl_datetime_local', current_date())]]
df.select("*", *exprs)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With