Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

how to hide plotly yaxis title (in python)?

Editing: The following example from Plotly for reference:

import plotly.express as px

df = px.data.gapminder().query("continent == 'Europe' and year == 2007 and pop > 2.e6")
fig = px.bar(df, y='pop', x='country', text='pop')
fig.update_traces(texttemplate='%{text:.2s}', textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.show()

How to remove the word 'pop'.


What I want to hide the y-axis title of'value'.

enter image description here The following syntax doesn't work.

fig.update_yaxes(showticklabels=False)

Thanks.

like image 895
ZKK Avatar asked May 09 '20 07:05

ZKK


People also ask

How do I hide the Plotly toolbar in Python?

To disable this floating toolbar, we can pass a single config parameter to the plot function. We use the predefined config object in Plotly. And we just need to set displayModeBar to false in the config object. This parameter passed in dictionary format will hide the floating toolbar once and for all.

How do you hide in Plotly legend?

In this example, we are hiding legend in Plotly with the help of method fig. update(layout_showlegend=False), by passing the showlegend parameter as False.

What is XREF in Plotly?

By default, text annotations have xref and yref set to "x" and "y" , respectively, meaning that their x/y coordinates are with respect to the axes of the plot.

What does Add_trace do in Plotly?

Adding Traces New traces can be added to a plot_ly figure using the add_trace() method. This method accepts a plot_ly figure trace and adds it to the figure. This allows you to start with an empty figure, and add traces to it sequentially.


1 Answers

Solution

You need to use visible=False inside fig.update_yaxes() or fig.update_layout() as follows. For more details see the documentation for plotly.graph_objects.Figure.

# Option-1:  using fig.update_yaxes()
fig.update_yaxes(visible=False, showticklabels=False)

# Option-2: using fig.update_layout()
fig.update_layout(yaxis={'visible': False, 'showticklabels': False})

# Option-3: using fig.update_layout() + dict-flattening shorthand
fig.update_layout(yaxis_visible=False, yaxis_showticklabels=False)

Try doing the following to test this:

# Set the visibility ON
fig.update_yaxes(title='y', visible=True, showticklabels=False)
# Set the visibility OFF
fig.update_yaxes(title='y', visible=False, showticklabels=False)

A. How to create the figure directly with hidden-yaxis label and tickmarks

You can do this directly by using the layout keyword and supplying a dict to go.Figure() constructor.

import plotly.graph_objects as go
fig = go.Figure(
    data=[go.Bar(y=[2, 1, 3])],
    layout_title_text="A Figure Displaying Itself",
    layout = {'xaxis': {'title': 'x-label',
                        'visible': True,
                        'showticklabels': True},
              'yaxis': {'title': 'y-label',
                        'visible': False,
                        'showticklabels': False}
              }
)
fig

enter image description here

B. How to create the figure without the margin space around

Say, you suppressed the titles for both the axes. By default plotly would still leave a default amount of space all around the figure: this is known as the margin in Plotly's documention.

What if you want to reduce or even completely remove the margin?

This can be done using fig.update_layout(margin=dict(l = ..., r = ..., t = ..., b = ...)) as mentioned in the documentation:

  • https://plotly.com/python/reference/#layout-margin.

In the following example, I have reduced the left, right and bottom margins to 10 px and set the top margin to 50 px.

import plotly.graph_objects as go

fig = go.Figure(
    data=[go.Bar(y=[2, 1, 3])],
    layout_title_text="A Figure with no axis-title and modified margins",
    layout = {
        'xaxis': {'title': 'x-label',
                'visible': False,
                'showticklabels': True},
        'yaxis': {'title': 'y-label',
                'visible': False,
                'showticklabels': False},
        # specify margins in px
        'margin': dict(
            l = 10,        # left
            r = 10,        # right
            t = 50,        # top
            b = 10,        # bottom
        ),
    },
)
fig

plotly-figure-with-no-axis-titles-and-reduced-margins

C. An Interesting Feature of Plotly: A hidden shorthand

It turns out that Plotly has a convenient shorthand notation allowing dict-flattening available for input arguments such as this:

## ALL THREE METHODS BELOW ARE EQUIVALENT

# No dict-flattening
# layout = dict with yaxis as key
layout = {'yaxis': {'title': 'y-label',
                    'visible': False,
                    'showticklabels': False}
}

# Partial dict-flattening
# layout_yaxis = dict with key-names
#     title, visible, showticklabels
layout_yaxis = {'title': 'y-label',
                'visible': False,
                'showticklabels': False}

# Complete dict-flattening
# layout_yaxis_key-name for each of the key-names
layout_yaxis_title = 'y-label'
layout_yaxis_visible = False
layout_yaxis_showticklabels = False

Now try running all three of the following and compare the outputs.

import plotly.graph_objects as go

# Method-1: Shortest (less detailed)
fig = go.Figure(
    data=[go.Bar(y=[2, 1, 3])],
    layout_title_text="A Figure Displaying Itself",
    layout_yaxis_visible = False,
    layout_xaxis_title = 'x-label'
)
fig.show()

# Method-2: A hibrid of dicts and underscore-separated-syntax
fig = go.Figure(
    data=[go.Bar(y=[2, 1, 3])],
    layout_title_text="A Figure Displaying Itself",
    layout_xaxis_title = 'x-label',
    layout_yaxis = {'title': 'y-label',
                        'visible': False,
                        'showticklabels': False}
)
fig.show()

# Method-3: A complete dict syntax
fig = go.Figure(
    data=[go.Bar(y=[2, 1, 3])],
    layout_title_text="A Figure Displaying Itself",
    layout = {'xaxis': {'title': 'x-label',
                        'visible': True,
                        'showticklabels': True},
              'yaxis': {'title': 'y-label',
                        'visible': False,
                        'showticklabels': False}
              }
)
fig.show()
like image 55
CypherX Avatar answered Sep 28 '22 11:09

CypherX