Right now I have code where some function func
executes the way I want it to when I give it specific arguments in its definition (so I make it func[x1_,x2_]:=...
and then later I make it func[x1_,x2_,x3_]:=...
without changing anything else and it works the way I would like it to). Is there a way to automatically substitute whatever arguments I specify for this function?
UPDATE:
I haven't isolated the problem code yet, but this code here does not do what I want:
(* Clear all stuff each time before running, just to be safe! *)
\
Clear["Global`*"]
data = {{238.2, 0.049}, {246.8, 0.055}, {255.8, 0.059}, {267.5,
0.063}, {280.5, 0.063}, {294.3, 0.066}, {307.7, 0.069}, {318.2,
0.069}};
errors = {{x1, 0.004}, {x2, 0.005}};
getX[x1_, x2_] := 1/x2^2
getY[x__] =
Evaluate[Simplify[
Sqrt[Sum[(D[getX[x], errors[[i]][[1]]] errors[[i]][[2]])^2, {i,
Length[errors]}]]]]
map[action_, list_] := action @@@ list
y = map[getY, data];
y
getY[2, 3]
This code here does: (gives {67.9989, 48.0841, 38.9524, 31.994, 31.994, 27.8265, 24.3525, 24.3525}
for y)
(* Clear all stuff each time before running, just to be safe! *) \ Clear["Global`*"]
data = {{238.2, 0.049}, {246.8,
0.055}, {255.8, 0.059}, {267.5,
0.063}, {280.5, 0.063}, {294.3, 0.066}, {307.7, 0.069}, {318.2,
0.069}}; errors = {{x2, 0.004}, {x1, 0.005}};
getX[x1_, x2_] := 1/x2^2
getY[x1_, x2_] := Evaluate[Simplify[ Sqrt[Sum[(D[getX[x1, x2], errors[[i]][[1]]]
errors[[i]][[2]])^2, {i, Length[errors]}]]]]
map[action_, list_] := action @@@ list
y = map[getY, data]; y
getY[2, 3]
UPDATE 2:
My math:
I intend to take the square root of the sum of the squares of all the partial derivatives of the getX
function. Thus the body of the getY
function. Then I want to evaluate that expression for different values of x1
and x2
. Thus I have the arguments for getY
.
Use __
, e.g.
In[4]:= f[x__] = {x}
Out[4]= {x}
In[5]:= f[1,2,3,4,5,6]
Out[5]= {1, 2, 3, 4, 5, 6}
In[6]:= f[a,b,c]
Out[6]= {a, b, c}
Well the issue is that in the first version, with explicit number of arguments, you have used Evaluate to evaluate the right hand side. You can not do this when the number of arguments is variable, because evaluator does not know which signature of getX
to use.
So the solution is to replace getY
with the following:
getY[x__] := (Simplify[
Sqrt[(D[getX @@
errors[[1 ;; Length[{x}], 1]], {errors[[All, 1]]}].
errors[[All, 2]])^2]]) /.
Thread[errors[[1 ;; Length[{x}], 1]] -> {x}]
This would first use variables from errors
list exactly as many as you have supplied in the arguments of getY
, compute the derivative symbolically, and then perform the Dot
, instead of Sum
which is faster. Then the outputs will be the same.
Notice that in your two versions of the code, errors
have different values.
Alternatively, you can use Derivative
like so:
getY2[x__] :=
Abs[(Derivative[##][getX][x] & @@@
IdentityMatrix[Length[{x}]].errors[[All, 2]])]
Using it gives the same result.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With