I have a pandas data frame df
like:
a b
A 1
A 2
B 5
B 5
B 4
C 6
I want to group by the first column and get second column as lists in rows:
A [1,2]
B [5,5,4]
C [6]
Is it possible to do something like this using pandas groupby?
To convert Pandas DataFrame to List in Python, use the DataFrame. values(). tolist() function.
How to perform groupby index in pandas? Pass index name of the DataFrame as a parameter to groupby() function to group rows on an index. DataFrame. groupby() function takes string or list as a param to specify the group columns or index.
Pandas comes with a whole host of sql-like aggregation functions you can apply when grouping on one or more columns. This is Python's closest equivalent to dplyr's group_by + summarise logic.
You can do this using groupby
to group on the column of interest and then apply
list
to every group:
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
df1
Out[3]:
a new
0 A [1, 2]
1 B [5, 5, 4]
2 C [6]
A handy way to achieve this would be:
df.groupby('a').agg({'b':lambda x: list(x)})
Look into writing Custom Aggregations: https://www.kaggle.com/akshaysehgal/how-to-group-by-aggregate-using-py
import numpy as np
df = pd.DataFrame({'a': np.random.randint(0, 60, 600), 'b': [1, 2, 5, 5, 4, 6]*100})
def f(df):
keys, values = df.sort_values('a').values.T
ukeys, index = np.unique(keys, True)
arrays = np.split(values, index[1:])
df2 = pd.DataFrame({'a':ukeys, 'b':[list(a) for a in arrays]})
return df2
In [301]: %timeit f(df)
1000 loops, best of 3: 1.64 ms per loop
In [302]: %timeit df.groupby('a')['b'].apply(list)
100 loops, best of 3: 5.26 ms per loop
To solve this for several columns of a dataframe:
In [5]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6],'c'
...: :[3,3,3,4,4,4]})
In [6]: df
Out[6]:
a b c
0 A 1 3
1 A 2 3
2 B 5 3
3 B 5 4
4 B 4 4
5 C 6 4
In [7]: df.groupby('a').agg(lambda x: list(x))
Out[7]:
b c
a
A [1, 2] [3, 3]
B [5, 5, 4] [3, 4, 4]
C [6] [4]
This answer was inspired from Anamika Modi's answer. Thank you!
Use any of the following groupby
and agg
recipes.
# Setup
df = pd.DataFrame({
'a': ['A', 'A', 'B', 'B', 'B', 'C'],
'b': [1, 2, 5, 5, 4, 6],
'c': ['x', 'y', 'z', 'x', 'y', 'z']
})
df
a b c
0 A 1 x
1 A 2 y
2 B 5 z
3 B 5 x
4 B 4 y
5 C 6 z
To aggregate multiple columns as lists, use any of the following:
df.groupby('a').agg(list)
df.groupby('a').agg(pd.Series.tolist)
b c
a
A [1, 2] [x, y]
B [5, 5, 4] [z, x, y]
C [6] [z]
To group-listify a single column only, convert the groupby to a SeriesGroupBy
object, then call SeriesGroupBy.agg
. Use,
df.groupby('a').agg({'b': list}) # 4.42 ms
df.groupby('a')['b'].agg(list) # 2.76 ms - faster
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
As you were saying the groupby
method of a pd.DataFrame
object can do the job.
Example
L = ['A','A','B','B','B','C']
N = [1,2,5,5,4,6]
import pandas as pd
df = pd.DataFrame(zip(L,N),columns = list('LN'))
groups = df.groupby(df.L)
groups.groups
{'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}
which gives and index-wise description of the groups.
To get elements of single groups, you can do, for instance
groups.get_group('A')
L N
0 A 1
1 A 2
groups.get_group('B')
L N
2 B 5
3 B 5
4 B 4
It is time to use agg
instead of apply
.
When
df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6], 'c': [1,2,5,5,4,6]})
If you want multiple columns stack into list , result in pd.DataFrame
df.groupby('a')[['b', 'c']].agg(list)
# or
df.groupby('a').agg(list)
If you want single column in list, result in ps.Series
df.groupby('a')['b'].agg(list)
#or
df.groupby('a')['b'].apply(list)
Note, result in pd.DataFrame
is about 10x slower than result in ps.Series
when you only aggregate single column, use it in multicolumns case .
Just a suplyment. pandas.pivot_table
is much more universal and seems more convenient:
"""data"""
df = pd.DataFrame( {'a':['A','A','B','B','B','C'],
'b':[1,2,5,5,4,6],
'c':[1,2,1,1,1,6]})
print(df)
a b c
0 A 1 1
1 A 2 2
2 B 5 1
3 B 5 1
4 B 4 1
5 C 6 6
"""pivot_table"""
pt = pd.pivot_table(df,
values=['b', 'c'],
index='a',
aggfunc={'b': list,
'c': set})
print(pt)
b c
a
A [1, 2] {1, 2}
B [5, 5, 4] {1}
C [6] {6}
If looking for a unique list while grouping multiple columns this could probably help:
df.groupby('a').agg(lambda x: list(set(x))).reset_index()
The easiest way I have found to achieve the same thing, at least for one column, which is similar to Anamika's answer, just with the tuple syntax for the aggregate function.
df.groupby('a').agg(b=('b','unique'), c=('c','unique'))
Building upon @B.M answer, here is a more general version and updated to work with newer library version: (numpy version 1.19.2
, pandas version 1.2.1
)
And this solution can also deal with multi-indices:
However this is not heavily tested, use with caution.
import pandas as pd
import numpy as np
np.random.seed(0)
df = pd.DataFrame({'a': np.random.randint(0, 10, 90), 'b': [1,2,3]*30, 'c':list('abcefghij')*10, 'd': list('hij')*30})
def f_multi(df,col_names):
if not isinstance(col_names,list):
col_names = [col_names]
values = df.sort_values(col_names).values.T
col_idcs = [df.columns.get_loc(cn) for cn in col_names]
other_col_names = [name for idx, name in enumerate(df.columns) if idx not in col_idcs]
other_col_idcs = [df.columns.get_loc(cn) for cn in other_col_names]
# split df into indexing colums(=keys) and data colums(=vals)
keys = values[col_idcs,:]
vals = values[other_col_idcs,:]
# list of tuple of key pairs
multikeys = list(zip(*keys))
# remember unique key pairs and ther indices
ukeys, index = np.unique(multikeys, return_index=True, axis=0)
# split data columns according to those indices
arrays = np.split(vals, index[1:], axis=1)
# resulting list of subarrays has same number of subarrays as unique key pairs
# each subarray has the following shape:
# rows = number of non-grouped data columns
# cols = number of data points grouped into that unique key pair
# prepare multi index
idx = pd.MultiIndex.from_arrays(ukeys.T, names=col_names)
list_agg_vals = dict()
for tup in zip(*arrays, other_col_names):
col_vals = tup[:-1] # first entries are the subarrays from above
col_name = tup[-1] # last entry is data-column name
list_agg_vals[col_name] = col_vals
df2 = pd.DataFrame(data=list_agg_vals, index=idx)
return df2
In [227]: %timeit f_multi(df, ['a','d'])
2.54 ms ± 64.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [228]: %timeit df.groupby(['a','d']).agg(list)
4.56 ms ± 61.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
for the random seed 0 one would get:
Let us using df.groupby
with list and Series
constructor
pd.Series({x : y.b.tolist() for x , y in df.groupby('a')})
Out[664]:
A [1, 2]
B [5, 5, 4]
C [6]
dtype: object
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With