I have the following dataframe structure that is indexed with a timestamp:
neg neu norm pol pos date
time
1520353341 0.000 1.000 0.0000 0.000000 0.000
1520353342 0.121 0.879 -0.2960 0.347851 0.000
1520353342 0.217 0.783 -0.6124 0.465833 0.000
I create a date from the timestamp:
data_frame['date'] = [datetime.datetime.fromtimestamp(d) for d in data_frame.time]
Result:
neg neu norm pol pos date
time
1520353341 0.000 1.000 0.0000 0.000000 0.000 2018-03-06 10:22:21
1520353342 0.121 0.879 -0.2960 0.347851 0.000 2018-03-06 10:22:22
1520353342 0.217 0.783 -0.6124 0.465833 0.000 2018-03-06 10:22:22
I want to group by hour, while getting the mean for all the values, except the timestamp, that should be the hour from where the group started. So this is the result I want to archive:
neg neu norm pol pos
time
1520352000 0.027989 0.893233 0.122535 0.221079 0.078779
1520355600 0.028861 0.899321 0.103698 0.209353 0.071811
The closest I have gotten so far has been with this answer:
data = data.groupby(data.date.dt.hour).mean()
Results:
neg neu norm pol pos
date
0 0.027989 0.893233 0.122535 0.221079 0.078779
1 0.028861 0.899321 0.103698 0.209353 0.071811
But I cant figure out how to keep the timestamp that takes in account he hour where the grouby started.
Comparison between pandas timestamp objects is carried out using simple comparison operators: >, <,==,< = , >=. The difference can be calculated using a simple '–' operator. Given time can be converted to pandas timestamp using pandas. Timestamp() method.
I came across this gem, pd.DataFrame.resample
, after I posted my round-to-hour solution.
# Construct example dataframe
times = pd.date_range('1/1/2018', periods=5, freq='25min')
values = [4,8,3,4,1]
df = pd.DataFrame({'val':values}, index=times)
# Resample by hour and calculate medians
df.resample('H').median()
Or you can use groupby
with Grouper
if you don't want times as index:
df = pd.DataFrame({'val':values, 'times':times})
df.groupby(pd.Grouper(level='times', freq='H')).median()
Did you try creating an hour column by:
data_frame['hour'] = data_frame.date.dt.hour
Then grouping by hour like:
data = data.groupby(data.hour).mean()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With