Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to group dataframe by hour using timestamp with Pandas

I have the following dataframe structure that is indexed with a timestamp:

    neg neu norm    pol pos date
time                        
1520353341  0.000   1.000   0.0000  0.000000    0.000   
1520353342  0.121   0.879   -0.2960 0.347851    0.000   
1520353342  0.217   0.783   -0.6124 0.465833    0.000   

I create a date from the timestamp:

data_frame['date'] = [datetime.datetime.fromtimestamp(d) for d in data_frame.time]

Result:

    neg neu norm    pol pos date
time                        
1520353341  0.000   1.000   0.0000  0.000000    0.000   2018-03-06 10:22:21
1520353342  0.121   0.879   -0.2960 0.347851    0.000   2018-03-06 10:22:22
1520353342  0.217   0.783   -0.6124 0.465833    0.000   2018-03-06 10:22:22

I want to group by hour, while getting the mean for all the values, except the timestamp, that should be the hour from where the group started. So this is the result I want to archive:

    neg neu norm    pol pos
time                    
1520352000  0.027989    0.893233    0.122535    0.221079    0.078779
1520355600  0.028861    0.899321    0.103698    0.209353    0.071811

The closest I have gotten so far has been with this answer:

data = data.groupby(data.date.dt.hour).mean()

Results:

    neg neu norm    pol pos
date                    
0   0.027989    0.893233    0.122535    0.221079    0.078779
1   0.028861    0.899321    0.103698    0.209353    0.071811

But I cant figure out how to keep the timestamp that takes in account he hour where the grouby started.

like image 408
Franco Avatar asked Mar 07 '18 16:03

Franco


People also ask

How do I compare Panda timestamps?

Comparison between pandas timestamp objects is carried out using simple comparison operators: >, <,==,< = , >=. The difference can be calculated using a simple '–' operator. Given time can be converted to pandas timestamp using pandas. Timestamp() method.


2 Answers

I came across this gem, pd.DataFrame.resample, after I posted my round-to-hour solution.

# Construct example dataframe
times = pd.date_range('1/1/2018', periods=5, freq='25min')
values = [4,8,3,4,1]
df = pd.DataFrame({'val':values}, index=times)

# Resample by hour and calculate medians
df.resample('H').median()

Or you can use groupby with Grouper if you don't want times as index:

df = pd.DataFrame({'val':values, 'times':times})
df.groupby(pd.Grouper(level='times', freq='H')).median()
like image 130
Jordi Avatar answered Nov 15 '22 09:11

Jordi


Did you try creating an hour column by:

data_frame['hour'] = data_frame.date.dt.hour

Then grouping by hour like:

data = data.groupby(data.hour).mean()
like image 25
Connor John Avatar answered Nov 15 '22 10:11

Connor John