Given a Pandas DataFrame that has multiple columns with categorical values (0 or 1), is it possible to conveniently get the value_counts for every column at the same time?
For example, suppose I generate a DataFrame as follows:
import numpy as np import pandas as pd np.random.seed(0) df = pd.DataFrame(np.random.randint(0, 2, (10, 4)), columns=list('abcd'))
I can get a DataFrame like this:
a b c d 0 0 1 1 0 1 1 1 1 1 2 1 1 1 0 3 0 1 0 0 4 0 0 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 1 0 8 1 0 1 1 9 0 1 1 0
How do I conveniently get the value counts for every column and obtain the following conveniently?
a b c d 0 6 3 2 6 1 4 7 8 4
My current solution is:
pieces = [] for col in df.columns: tmp_series = df[col].value_counts() tmp_series.name = col pieces.append(tmp_series) df_value_counts = pd.concat(pieces, axis=1)
But there must be a simpler way, like stacking, pivoting, or groupby?
In order to get the count of unique values on multiple columns use pandas DataFrame. drop_duplicates() which drop duplicate rows from pandas DataFrame. This eliminates duplicates and return DataFrame with unique rows.
value_counts() function returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.
We can count by using the value_counts() method. This function is used to count the values present in the entire dataframe and also count values in a particular column.
To count the number of occurrences in e.g. a column in a dataframe you can use Pandas value_counts() method. For example, if you type df['condition']. value_counts() you will get the frequency of each unique value in the column “condition”.
Just call apply
and pass pd.Series.value_counts
:
In [212]: df = pd.DataFrame(np.random.randint(0, 2, (10, 4)), columns=list('abcd')) df.apply(pd.Series.value_counts) Out[212]: a b c d 0 4 6 4 3 1 6 4 6 7
There is actually a fairly interesting and advanced way of doing this problem with crosstab
and melt
df = pd.DataFrame({'a': ['table', 'chair', 'chair', 'lamp', 'bed'], 'b': ['lamp', 'candle', 'chair', 'lamp', 'bed'], 'c': ['mirror', 'mirror', 'mirror', 'mirror', 'mirror']}) df a b c 0 table lamp mirror 1 chair candle mirror 2 chair chair mirror 3 lamp lamp mirror 4 bed bed mirror
We can first melt the DataFrame
df1 = df.melt(var_name='columns', value_name='index') df1 columns index 0 a table 1 a chair 2 a chair 3 a lamp 4 a bed 5 b lamp 6 b candle 7 b chair 8 b lamp 9 b bed 10 c mirror 11 c mirror 12 c mirror 13 c mirror 14 c mirror
And then use the crosstab function to count the values for each column. This preserves the data type as ints which wouldn't be the case for the currently selected answer:
pd.crosstab(index=df1['index'], columns=df1['columns']) columns a b c index bed 1 1 0 candle 0 1 0 chair 2 1 0 lamp 1 2 0 mirror 0 0 5 table 1 0 0
Or in one line, which expands the column names to parameter names with **
(this is advanced)
pd.crosstab(**df.melt(var_name='columns', value_name='index'))
Also, value_counts
is now a top-level function. So you can simplify the currently selected answer to the following:
df.apply(pd.value_counts)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With