I want to list out all the unique values in all columns in a Pandas dataframe and store them in another data frame. I have tried this but its appending row wise and I want it column wise. How do I do that?
raw_data = {'student_name': ['Miller', 'Miller', 'Ali', 'Miller'],
'test_score': [76, 75,74,76]}
df2 = pd.DataFrame(raw_data, columns = ['student_name', 'test_score'])
newDF = pd.DataFrame()
for column in df2.columns[0:]:
dat = df2[column].drop_duplicates()
df3 = pd.DataFrame(dat)
newDF = newDF.append(df3)
print(newDF)
Expected Output:
student_name test_score
Ali 74
Miller 75
76
I think you can use drop_duplicates
.
If want check some column(s) and keep first rows if dupe:
newDF = df2.drop_duplicates('student_name')
print(newDF)
student_name test_score
0 Miller 76.0
1 Jacobson 88.0
2 Ali 84.0
3 Milner 67.0
4 Cooze 53.0
5 Jacon 96.0
6 Ryaner 64.0
7 Sone 91.0
8 Sloan 77.0
9 Piger 73.0
10 Riani 52.0
And thank you, @cᴏʟᴅsᴘᴇᴇᴅ for another solution:
df2[~df2.student_name.duplicated()]
But if want check all columns together for dupes, keep first rows:
newDF = df2.drop_duplicates()
print(newDF)
student_name test_score
0 Miller 76.0
1 Jacobson 88.0
2 Ali 84.0
3 Milner 67.0
4 Cooze 53.0
5 Jacon 96.0
6 Ryaner 64.0
7 Sone 91.0
8 Sloan 77.0
9 Piger 73.0
10 Riani 52.0
11 Ali NaN
EDIT by new sample - remove duplicates and sort by both columns:
newDF = df2.drop_duplicates().sort_values(['student_name', 'test_score'])
print(newDF)
student_name test_score
2 Ali 74
1 Miller 75
0 Miller 76
EDIT1: If want replace dupes by first column by NaN
s:
newDF = df2.drop_duplicates().sort_values(['student_name', 'test_score'])
newDF['student_name'] = newDF['student_name'].mask(newDF['student_name'].duplicated())
print(newDF)
student_name test_score
2 Ali 74
1 Miller 75
0 NaN 76
EDIT2: More general solution:
newDF = df2.sort_values(df2.columns.tolist())
.reset_index(drop=True)
.apply(lambda x: x.drop_duplicates())
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With