Is there a way to get significance codes after a pairwise comparisons to a Kruskall wallis test? With significance codes I mean letter codes that are assigned to populations to indicate where differences are significant.
With a traditional anova such a test can be performed using HSD.test
from the agricolae
library but for non parametric counterparts of anova I have not been able to find anything.
A small toy example:
dv <- c(runif(100, 5.0, 10))
iv <- as.factor( c(rep("I", 10), rep("II", 10), rep("III", 10), rep("IV", 10), rep("V", 10),
rep("VI", 10), rep("VII", 10), rep("VIII", 10), rep("IX", 10), rep("X", 10)))
df <- data.frame(dv, iv)
# with anova
library(agricolae)
aov.000 <- aov(dv ~ iv, data=df)
HSD.test(aov.000, "iv")
# after KW test:
(kt <- kruskal.test(dv ~ iv, data=df))
library(coin)
library(multcomp)
NDWD <- oneway_test(dv ~ iv, data = df,
ytrafo = function(data) trafo(data, numeric_trafo = rank),
xtrafo = function(data) trafo(data, factor_trafo = function(x)
model.matrix(~x - 1) %*% t(contrMat(table(x), "Tukey"))),
teststat = "max", distribution = approximate(B=1000))
### global p-value
print(pvalue(NDWD))
### sites (I = II) != (III = IV) at alpha = 0.01 (page 244)
print(pvalue(NDWD, method = "single-step"))
because it might be of use to others, the following seems to work (using the multcompView
library):
library(multcompView)
mat <- data.frame(print(pvalue(NDWD, method = "single-step")))
(a <- c(mat[, 1])); names(a) <- rownames(mat)
multcompLetters(a)
Alternatively the following will work:
test <- pairwise.wilcox.test(dv, iv, p.adj="bonferroni", exact=FALSE)
# test <- pairwise.wilcox.test(et.ef, s.t, p.adj="holm", exact=FALSE)
library(multcompView)
test$p.value
library(reshape)
(a <- melt(test$p.value))
a.cc <- na.omit(a)
a.pvals <- a.cc[, 3]
names(a.pvals) <- paste(a.cc[, 1], a.cc[, 2], sep="-")
a.pvals
multcompLetters(a.pvals)
You can also use the cldList function from the rcompanion package (see https://rcompanion.org/rcompanion/d_06.html). Example:
k_test <- k_test$res
library(rcompanion)
cldList(comparison = k_test$Comparison,
p.value = PT$P.adj,
threshold = 0.05)
Error: No significant differences.
I used it in combination with the Dunn post-hoc and it worked perfectly.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With