I'm trying to load a learner which was exported by learn.export()
and I want to run it against a test set. I want my test set have labels so that I can measure its accuracy.
This is my code:
test_src = (TextList.from_df(df, path, cols='texts')
.split_by_rand_pct(0.1, seed=42)
.label_from_df(cols='recommend'))
learn_fwd = load_learner(path + '/fwd_learn_c',
test=test_src) #, tfm_y=False)
pred_fwd,lbl_fwd = learn_fwd.get_preds(ds_type=DatasetType.Test,ordered=True)
accuracy(pred_fwd, lbl_fwd)
And I got the following error, which apparently doesn't accept a labeled data set!!
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-7f52f2136d8e> in <module>
6
7 learn_fwd = load_learner(path + '/fwd_learn_c',
----> 8 test=test_src) #, tfm_y=False)
9 learn_bwd = load_learner(path + '/bwd_learn_c',
10 test=test_src) #, tfm_y=test_src)
~/miniconda3/lib/python3.7/site-packages/fastai/basic_train.py in load_learner(path, file, test, tfm_y, **db_kwargs)
622 model = state.pop('model')
623 src = LabelLists.load_state(path, state.pop('data'))
--> 624 if test is not None: src.add_test(test, tfm_y=tfm_y)
625 data = src.databunch(**db_kwargs)
626 cb_state = state.pop('cb_state')
~/miniconda3/lib/python3.7/site-packages/fastai/data_block.py in add_test(self, items, label, tfms, tfm_y)
562 "Add test set containing `items` with an arbitrary `label`."
563 # if no label passed, use label of first training item
--> 564 if label is None: labels = EmptyLabelList([0] * len(items))
565 else: labels = self.valid.y.new([label] * len(items)).process()
566 if isinstance(items, MixedItemList): items = self.valid.x.new(items.item_lists, inner_df=items.inner_df).process()
TypeError: object of type 'LabelLists' has no len()
It seems that for the test set, it just accepts an ItemList (without lables). In the above example, I passed a LabelList to it which is the source of error. Anyway to get the accuracy for a test set I found the following solution:
# Create your test set:
data_test = (TextList.from_df(df, path, cols='texts')
.split_by_rand_pct(0.1, seed=42)
.label_from_df(cols='recommend'))
data_test.valid = data_test.train
data_test=data_test.databunch()
# Set the validation set of the learner by the test data you created
learn.data.valid_dl = data_test.valid_dl
# Now y refers to the actual labels in the data set
preds, y = learn.get_preds(ds_type=DatasetType.Valid)
acc = accuracy(preds, y)
# Alternatively you can call validate if you don't want the predictions
acc = learn.validate()[1]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With