I have pandas dataframe which has object,int64,float64
datatypes. I want to get column names for int64 and float64
columns. I am using following command in pandas,but it does not seem to work
cat_num_prv_app = [num for num in list(df.columns) if isinstance(num, (np.int64,np.float64))]
Following are my datatypes
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1670214 entries, 0 to 1670213
Data columns (total 37 columns):
ID 1670214 non-null int64
NAME 1670214 non-null object
ANNUITY 1297979 non-null float64
AMOUNT 1670214 non-null float64
CREDIT 1670213 non-null float64
I want to store column names ID,ANNUITY,AMOUNT and CREDIT
in a variable,which I can use later to subset the dataframe.
Use select_dtypes
with np.number
for select all numeric columns:
df = pd.DataFrame({'A':list('abcdef'),
'B':[4.5,5,4,5,5,4],
'C':[7.4,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':list('aaabbb')})
print (df)
A B C D E
0 a 4.5 7.4 1 a
1 b 5.0 8.0 3 a
2 c 4.0 9.0 5 a
3 d 5.0 4.0 7 b
4 e 5.0 2.0 1 b
5 f 4.0 3.0 0 b
print (df.dtypes)
A object
B float64
C float64
D int64
E object
dtype: object
cols = df.select_dtypes([np.number]).columns
print (cols)
Index(['B', 'C', 'D'], dtype='object')
Here is possible specify float64
and int64
:
df = pd.DataFrame({'A':list('abcdef'),
'B':[4.5,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':list('aaabbb')})
df['D'] = df['D'].astype(np.int32)
print (df.dtypes)
A object
B float64
C int64
D int32
E object
dtype: object
cols = df.select_dtypes([np.int64,np.float64]).columns
print (cols)
Index(['B', 'C'], dtype='object')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With