I have a timeseries like this:
times | data
1994-07-25 15:15:00.000 | 165
1994-07-25 16:00:00.000 | 165
1994-07-26 18:45:00.000 | 165
1994-07-27 15:15:00.000 | 165
1994-07-27 16:00:00.000 | 165
1994-07-28 18:45:00.000 | 165
1994-07-28 19:15:00.000 | 63
1994-07-28 20:35:00.000 | 64
1994-07-28 21:55:00.000 | 64
1994-07-29 14:15:00.000 | 62
1994-07-30 15:35:00.000 | 62
1994-07-30 16:55:00.000 | 61
I would like to do a lookback moving average on this data, but with a window based on date, not on rows or datetime.
For example, say lookback = 3 days
, then for
1994-07-29 14:15:00.000 | 62
its lookback moving average value should be the average of
1994-07-26 18:45:00.000 | 165
1994-07-27 15:15:00.000 | 165
1994-07-27 16:00:00.000 | 165
1994-07-28 18:45:00.000 | 165
1994-07-28 19:15:00.000 | 63
1994-07-28 20:35:00.000 | 64
1994-07-28 21:55:00.000 | 64
Because it is a 3 days lookback, so the average will will starts from 1994-07-26
for 3 days, no matter how many rows within one day.
In addition, for multiple rows with the same date (not including time), their lookback moving average values should be the same.
How can I easily achieve that?
I would use the pandas DatetimeIndex to accumulate the values for each date.
You can then use rolling_mean to calculate the average you require.
import numpy as np
import pandas
df = pandas.DataFrame({'times': np.array(['1994-07-25 15:15:00.000',
'1994-07-25 16:00:00.000',
'1994-07-26 18:45:00.000',
'1994-07-27 15:15:00.000',
'1994-07-27 16:00:00.000',
'1994-07-28 18:45:00.000',
'1994-07-28 19:15:00.000',
'1994-07-28 20:35:00.000',
'1994-07-28 21:55:00.000',
'1994-07-29 14:15:00.000',
'1994-07-30 15:35:00.000',
'1994-07-30 16:55:00.000'], dtype='datetime64'),
'data': [165,165,165,165,165,165,63,64,64,62,62,61]})
df = df.set_index('times')
g = df.groupby(df.index.date)
days = 3
pandas.rolling_mean(g.sum(), days)
This gives:
1994-07-25 NaN
1994-07-26 NaN
1994-07-27 275.000000
1994-07-28 283.666667
1994-07-29 249.333333
1994-07-30 180.333333
You might wish to play with the center
and min_periods
arguments on rolling_mean
to get the exact results you want.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With