I am trying to create a loop that would get all unique matrices. The only parameters would be a range from 0:1 and the matrix having a dimension of 4x4. This would mean that there would be 65,536 unique matrices (2^16). I define unique as no two matrices share the same elements in the same coordinates. Here is what I have so far:
binary <- function(m, n)
matrix(sample(0:1, m * n, replace = TRUE), m, n)
where m = 4 and n = 4.
Not sure how to generate a loop that would calculate all unique permutations.
A very fast solution using RcppAlgos::permuteGeneral
.
binary2 <- function(m, n) {
mn <- m*n
perm <- RcppAlgos::permuteGeneral(v=0:1, m=mn, repetition=TRUE)
lapply(1:nrow(perm), function(i) matrix(perm[i, ], nrow=m, ncol=n))
}
Edit: The benchmark (see below) revealed, a combination of rcpp
and @Onyambu's array
solution is very fast:
binary3.2 <- function(m, n) {
mn <- m*n
perm <- RcppAlgos::permuteGeneral(0:1, mn, TRUE)
asplit(array(t(perm), c(m, n, 2^(m*n))), 3)
}
binary3.2(2, 2)
# [[1]]
# [,1] [,2]
# [1,] 0 0
# [2,] 0 0
#
# [[2]]
# [,1] [,2]
# [1,] 0 0
# [2,] 0 1
#
# [[3]]
# [,1] [,2]
# [1,] 0 1
# [2,] 0 0
#
# [[4]]
# [,1] [,2]
# [1,] 0 1
# [2,] 0 1
#
# [[5]]
# [,1] [,2]
# [1,] 0 0
# [2,] 1 0
#
# [[6]]
# [,1] [,2]
# [1,] 0 0
# [2,] 1 1
#
# [[7]]
# [,1] [,2]
# [1,] 0 1
# [2,] 1 0
#
# [[8]]
# [,1] [,2]
# [1,] 0 1
# [2,] 1 1
#
# [[9]]
# [,1] [,2]
# [1,] 1 0
# [2,] 0 0
#
# [[10]]
# [,1] [,2]
# [1,] 1 0
# [2,] 0 1
#
# [[11]]
# [,1] [,2]
# [1,] 1 1
# [2,] 0 0
#
# [[12]]
# [,1] [,2]
# [1,] 1 1
# [2,] 0 1
#
# [[13]]
# [,1] [,2]
# [1,] 1 0
# [2,] 1 0
#
# [[14]]
# [,1] [,2]
# [1,] 1 0
# [2,] 1 1
#
# [[15]]
# [,1] [,2]
# [1,] 1 1
# [2,] 1 0
#
# [[16]]
# [,1] [,2]
# [1,] 1 1
# [2,] 1 1
microbenchmark
Note: used m <- 4; n <- 4
microbenchmark::microbenchmark(b.rcpp(), b.apply.exp(), b.apply.simp(),
b.asplit.array(), b.array(), b.array_tree(),
b.rcpp.array(), b.rcpp.arr.aspl(),
times=5L, control=list(warmup=5L))
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# b.rcpp() 388.82227 389.27565 419.43537 408.99157 448.78494 461.3024 5 cd
# b.apply.exp() 446.85891 484.10602 502.78558 488.01344 518.98317 575.9664 5 de
# b.apply.simp() 512.89587 553.52379 588.59234 569.65709 577.65281 729.2322 5 e
# b.asplit.array() 273.01535 325.13691 320.53399 328.99840 335.36864 340.1507 5 bc
# b.array() 27.37996 29.33839 84.25181 39.65228 44.44757 280.4408 5 a
# b.array_tree() 322.98764 364.64733 424.07656 391.41701 439.77709 601.5537 5 cd
# b.rcpp.array() 51.87000 52.19530 66.88202 53.49471 61.88716 114.9629 5 a
# b.rcpp.arr.aspl() 261.10201 263.29439 272.21605 278.05505 278.37984 280.2490 5 b
> b.array <- function(m, n) {
+ array(t(expand.grid(rep(list(0:1),m*n))),c(m,n,2^(m*n)))
+ }
>
> b.asplit.array <- function(m, n) {
+ asplit(array(t(expand.grid(rep(list(0:1),m*n))),c(m,n,2^(m*n))), 3)
+ }
> b.rcpp.arr <- function(m, n) {
+ perm <- RcppAlgos::permuteGeneral(0:1, m*n, TRUE)
+ array(t(perm), c(m, n, 2^(m*n)))
+ }
>
> b.rcpp.asp.arr <- function(m, n) {
+ perm <- RcppAlgos::permuteGeneral(0:1, m*n, TRUE)
+ asplit(array(t(perm), c(m, n, 2^(m*n))), 3)
+ }
>
> microbenchmark::microbenchmark(b.array(4, 4), b.asplit.array(4, 4),
+ b.rcpp.arr(4, 4), b.rcpp.asp.arr(4, 4),
+ times=100L, control=list(warmup=100L))
Unit: milliseconds
expr min lq mean median uq max neval cld
b.array(4, 4) 22.69801 27.03368 41.87245 33.35203 37.11160 213.8378 100 a
b.asplit.array(4, 4) 231.28149 251.42609 302.35571 295.42282 331.09442 492.8092 100 b
b.rcpp.arr(4, 4) 32.03322 35.92215 55.64920 50.98276 56.55712 220.2534 100 a
b.rcpp.asp.arr(4, 4) 245.92865 272.14143 316.28854 307.01918 335.84227 493.5027 100 b
>
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With