Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to get a graph for stock market analysis?

I updated the code and it now provides the graph, however after giving me the graph it produces the following error messages.

Warning (from warnings module): File "C:\Python27\lib\site-packages\matplotlib\collections.py", line 590 if self._edgecolors == str('face'): FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison

import urllib2
import time
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
from matplotlib.finance import candlestick_ochl 
import matplotlib
import pylab
matplotlib.rcParams.update({'font.size': 9})



def rsiFunc(prices, n=14):
    deltas = np.diff(prices)
    seed = deltas[:n+1]
    up = seed[seed>=0].sum()/n
    down = -seed[seed<0].sum()/n
    rs = up/down
    rsi = np.zeros_like(prices)
    rsi[:n] = 100. - 100./(1.+rs)

    for i in range(n, len(prices)):
        delta = deltas[i-1] # cause the diff is 1 shorter

        if delta>0:
            upval = delta
            downval = 0.
        else:
            upval = 0.
            downval = -delta

        up = (up*(n-1) + upval)/n
        down = (down*(n-1) + downval)/n

        rs = up/down
        rsi[i] = 100. - 100./(1.+rs)

    return rsi

def movingaverage(values,window):
    weigths = np.repeat(1.0, window)/window
    smas = np.convolve(values, weigths, 'valid')
    return smas # as a numpy array

def ExpMovingAverage(values, window):
    weights = np.exp(np.linspace(-1., 0., window))
    weights /= weights.sum()
    a =  np.convolve(values, weights, mode='full')[:len(values)]
    a[:window] = a[window]
    return a


def computeMACD(x, slow=26, fast=12):
    """
    compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
    return value is emaslow, emafast, macd which are len(x) arrays
    """
    emaslow = ExpMovingAverage(x, slow)
    emafast = ExpMovingAverage(x, fast)
    return emaslow, emafast, emafast - emaslow


def graphData(stock,MA1,MA2):
    '''
        Use this to dynamically pull a stock:
    '''
    try:
        print 'Currently Pulling',stock
        print str(datetime.datetime.fromtimestamp(int(time.time())).strftime('%Y-%m-%d %H:%M:%S'))
        #Keep in mind this is close high low open data from Yahoo
        urlToVisit = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv'
        stockFile =[]
        try:
            sourceCode = urllib2.urlopen(urlToVisit).read()
            splitSource = sourceCode.split('\n')
            for eachLine in splitSource:
                splitLine = eachLine.split(',')
                if len(splitLine)==6:
                    if 'values' not in eachLine:
                        stockFile.append(eachLine)
        except Exception, e:
            print str(e), 'failed to organize pulled data.'
    except Exception,e:
        print str(e), 'failed to pull pricing data'
    try:   
        date, closep, highp, lowp, openp, volume = np.loadtxt(stockFile,delimiter=',', unpack=True,
                                                              converters={ 0: mdates.strpdate2num('%Y%m%d')})
        x = 0
        y = len(date)
        newAr = []
        while x < y:
            appendLine = date[x],openp[x],closep[x],highp[x],lowp[x],volume[x]
            newAr.append(appendLine)
            x+=1

        Av1 = movingaverage(closep, MA1)
        Av2 = movingaverage(closep, MA2)

        SP = len(date[MA2-1:])

        fig = plt.figure(facecolor='#07000d')

        ax1 = plt.subplot2grid((6,4), (1,0), rowspan=4, colspan=4, axisbg='#07000d')
        candlestick_ochl(ax1, newAr[-SP:], width=.6, colorup='#53c156', colordown='#ff1717')#width=.6, plot_day_summary_ohlc

        Label1 = str(MA1)+' SMA'
        Label2 = str(MA2)+' SMA'

        ax1.plot(date[-SP:],Av1[-SP:],'#e1edf9',label=Label1, linewidth=1.5)
        ax1.plot(date[-SP:],Av2[-SP:],'#4ee6fd',label=Label2, linewidth=1.5)

        ax1.grid(True, color='w')
        ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
        ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
        ax1.yaxis.label.set_color("w")
        ax1.spines['bottom'].set_color("#5998ff")
        ax1.spines['top'].set_color("#5998ff")
        ax1.spines['left'].set_color("#5998ff")
        ax1.spines['right'].set_color("#5998ff")
        ax1.tick_params(axis='y', colors='w')
        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper')) #gca()
        ax1.tick_params(axis='x', colors='w')
        plt.ylabel('Stock price and Volume')

        maLeg = plt.legend(loc=9, ncol=2, prop={'size':7},
                   fancybox=True, borderaxespad=0.)
        maLeg.get_frame().set_alpha(0.4)
        textEd = plt.gca().get_legend().get_texts()#pylab.gca() changed to plt.gca()
        plt.setp(textEd[0:5], color = 'w')#changed pylab.setp to plt.setp

        volumeMin = 0

        ax0 = plt.subplot2grid((6,4), (0,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
        rsi = rsiFunc(closep)
        rsiCol = '#c1f9f7'
        posCol = '#386d13'
        negCol = '#8f2020'

        ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
        ax0.axhline(70, color=negCol)
        ax0.axhline(30, color=posCol)
        ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
        ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
        ax0.set_yticks([30,70])
        ax0.yaxis.label.set_color("w")
        ax0.spines['bottom'].set_color("#5998ff")
        ax0.spines['top'].set_color("#5998ff")
        ax0.spines['left'].set_color("#5998ff")
        ax0.spines['right'].set_color("#5998ff")
        ax0.tick_params(axis='y', colors='w')
        ax0.tick_params(axis='x', colors='w')
        plt.ylabel('RSI')

        ax1v = ax1.twinx()
        ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#00ffe8', alpha=.4)
        ax1v.axes.yaxis.set_ticklabels([])
        ax1v.grid(False)
        ax1v.set_ylim(0, 3*volume.max())
        ax1v.spines['bottom'].set_color("#5998ff")
        ax1v.spines['top'].set_color("#5998ff")
        ax1v.spines['left'].set_color("#5998ff")
        ax1v.spines['right'].set_color("#5998ff")
        ax1v.tick_params(axis='x', colors='w')
        ax1v.tick_params(axis='y', colors='w')


        ax2 = plt.subplot2grid((6,4), (5,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')



        # START NEW INDICATOR CODE #



        # END NEW INDICATOR CODE #




        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
        ax2.spines['bottom'].set_color("#5998ff")
        ax2.spines['top'].set_color("#5998ff")
        ax2.spines['left'].set_color("#5998ff")
        ax2.spines['right'].set_color("#5998ff")
        ax2.tick_params(axis='x', colors='w')
        ax2.tick_params(axis='y', colors='w')
        ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))





        for label in ax2.xaxis.get_ticklabels():
            label.set_rotation(45)

        plt.suptitle(stock.upper(),color='w')

        plt.setp(ax0.get_xticklabels(), visible=False)
        plt.setp(ax1.get_xticklabels(), visible=False)

        '''ax1.annotate('Big news!',(date[510],Av1[510]),
            xytext=(0.8, 0.9), textcoords='axes fraction',
            arrowprops=dict(facecolor='white', shrink=0.05),
            fontsize=14, color = 'w',
            horizontalalignment='right', verticalalignment='bottom')'''

        plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0)
        plt.show()
        fig.savefig('example.png',facecolor=fig.get_facecolor())

    except Exception,e:
        print 'main loop',str(e)

while True:
    stock = raw_input('Stock to plot: ')
    graphData(stock,10,50)
like image 638
Jonathan Holloway Avatar asked Oct 19 '22 04:10

Jonathan Holloway


1 Answers

Please look at the thread Violin plot: warning with matplotlib 1.4.3 and pyplot fill_between warning since upgrade of numpy to 1.10.10

It seems there is a bug in matplotlib 1.4.3 (which has only started causing that error since the upgrade to numpy 1.10). This is reportedly corrected in 1.5.0 (which should be released soon). Hope this helps.

like image 134
user3644627 Avatar answered Nov 01 '22 11:11

user3644627