I am wondering how i could generate random numbers that appear in a circular distribution.
I am able to generate random points in a rectangular distribution such that the points are generated within the square of (0 <= x < 1000, 0 <= y < 1000):
How would i go upon to generate the points within a circle such that:
(x−500)^2 + (y−500)^2 < 250000 ?
Python provides a random module to generate random numbers. To generate random numbers we have used the random function along with the use of the random. randint function. randint accepts two parameters, a starting point, and an ending point.
The first step is to decompose the polygon into triangles. You can use the relative areas of the triangles to determine the probability that a random point is in each triangle. Finally, you can generate random points in the union of the triangles.
import random
import math
# radius of the circle
circle_r = 10
# center of the circle (x, y)
circle_x = 5
circle_y = 7
# random angle
alpha = 2 * math.pi * random.random()
# random radius
r = circle_r * math.sqrt(random.random())
# calculating coordinates
x = r * math.cos(alpha) + circle_x
y = r * math.sin(alpha) + circle_y
print("Random point", (x, y))
In your example circle_x
is 500 as circle_y
is. circle_r
is 500.
Another version of calculating radius to get uniformly distributed points, based on this answer
u = random.random() + random.random()
r = circle_r * (2 - u if u > 1 else u)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With