I am trying to freeze the weights of certain layer in a prediction model with Keras and mnist dataset, but it does not work. The code is like:
from keras.layers import Dense, Flatten
from keras.utils import to_categorical
from keras.models import Sequential, load_model
from keras.datasets import mnist
from keras.losses import categorical_crossentropy
import numpy as np
def load_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
return x_train, y_train, x_test, y_test
def run():
x_train, y_train, x_test, y_test = load_data()
model = Sequential([Flatten(input_shape=(28, 28)),
Dense(300, name='dense1', activation='relu'),
Dense(100, name='dense2', activation='relu'),
Dense(10, name='dense3', activation='softmax')])
model.trainable = True
model.compile(optimizer='Adam',
metrics=['accuracy'],
loss=categorical_crossentropy)
print(model.summary())
model.fit(x_train, y_train, epochs=5, verbose=2)
print(model.evaluate(x_test, y_test))
return model
def freeze(model):
x_train, y_train, x_test, y_test = load_data()
name = 'dense1'
weightsAndBias = model.get_layer(name=name).get_weights()
# freeze the weights of this layer
model.get_layer(name=name).trainable = False
# record the weights before retrain
weights_before = weightsAndBias[0]
# retrain
model.fit(x_train, y_train, verbose=2, epochs=1)
weights_after = model.get_layer(name=name).get_weights()[0]
if (weights_before == weights_after).all():
print('the weights did not change!!!')
else:
print('the weights changed!!!!')
if __name__ == '__main__':
model = run()
freeze(model)
The program outputs 'the weights changed!!!!'.
I do not understand why the weights of the layer named 'dense1' changes after setting model.get_layer(name=name).trainable = False
.
You can do it by using:
model=Sequential()
layer=Dense(64,init='glorot_uniform',input_shape=(784,))
layer.trainable=False
model.add(layer)
layer2=Dense(784, activation='sigmoid',init='glorot_uniform')
layer2.trainable=True
model.add(layer2)
model.compile(loss='relu', optimizer=sgd,metrics = ['mae'])
You need to compile the graph after setting 'trainable'.
more info here
let me keep my layers freezed upto 5th layer, rest i will keep trainable
Here is more simple & more efficient code
for layer in model.layers[:5]:
layer.trainable=False
for layer in model.layers[5:]:
layer.trainable=True
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With