The data I am visualising only makes sense if it is whole numbers.
I.e. 0.2 of a record doesn't make sense in terms of the context of the information I am analysing.
How do I force matplotlib to only use whole numbers on the Y axis. I.e. 1, 100, 5 etc? not 0.1, 0.2 etc
for a in account_list:
f = plt.figure()
f.set_figheight(20)
f.set_figwidth(20)
f.sharex = True
f.sharey=True
left = 0.125 # the left side of the subplots of the figure
right = 0.9 # the right side of the subplots of the figure
bottom = 0.1 # the bottom of the subplots of the figure
top = 0.9 # the top of the subplots of the figure
wspace = 0.2 # the amount of width reserved for blank space between subplots
hspace = .8 # the amount of height reserved for white space between subplots
subplots_adjust(left=left, right=right, bottom=bottom, top=top, wspace=wspace, hspace=hspace)
count = 1
for h in headings:
sorted_data[sorted_data.account == a].ix[0:,['month_date',h]].plot(ax=f.add_subplot(7,3,count),legend=True,subplots=True,x='month_date',y=h)
#set bottom Y axis limit to 0 and change number format to 1 dec place.
axis_data = f.gca()
axis_data.set_ylim(bottom=0.)
from matplotlib.ticker import FormatStrFormatter
axis_data.yaxis.set_major_formatter(FormatStrFormatter('%.0f'))
#This was meant to set Y axis to integer???
y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
axis_data.yaxis.set_major_formatter(y_formatter)
import matplotlib.patches as mpatches
legend_name = mpatches.Patch(color='none', label=h)
plt.xlabel("")
ppl.legend(handles=[legend_name],bbox_to_anchor=(0.,1.2,1.0,.10), loc="center",ncol=2, mode="expand", borderaxespad=0.)
count = count + 1
savefig(a + '.png', bbox_inches='tight')
To set the limits for X-axis only, We could use xlim() and set_xlim() methods. Similarly to set the limits for Y-axis, we could use ylim() and set_ylim() methods. We can also use axis() method which can control the range of both axes.
MatPlotLib with Python To change the range of X and Y axes, we can use xlim() and ylim() methods.
To specify the value of axes, create a list of characters. Use xticks and yticks method to specify the ticks on the axes with x and y ticks data points respectively. Plot the line using x and y, color=red, using plot() method. Make x and y margin 0.
The most flexible way is to specify integer=True
to the default tick locator (MaxNLocator
) do something similar to this:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
fig, ax = plt.subplots()
# Be sure to only pick integer tick locations.
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_locator(ticker.MaxNLocator(integer=True))
# Plot anything (note the non-integer min-max values)...
x = np.linspace(-0.1, np.pi, 100)
ax.plot(0.5 * x, 22.8 * np.cos(3 * x), color='black')
# Just for appearance's sake
ax.margins(0.05)
ax.axis('tight')
fig.tight_layout()
plt.show()
Alternatively, you can manually set the tick locations/labels as Marcin and Joel suggest (or use a MultipleLocator
). The downside to this is that you need to work out what tick positions make sense, rather than having matplotlib pick a reasonable integer tick interval based on the axis limits.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With